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Introduction:

Hirschsprung disease (HSCR) is characterized by the absence of intramural ganglion cells in
the nerve plexuses of the distal gut [1, 2].Typically, HSCR are present in neonates or early
childhood with symptoms ranging from chronic constipation to acute ileus, but late manifestation in
adults have occasionally been described [3]. It is the most common cause of neonatal intestinal
obstruction, affecting one in 5000 live newborns with a male predominance (3:1 to 5:1) [1, 2, 4, 5].
The disease has a complex genetic etiology and is likely to be of multifactorial inheritance with a
couple of susceptibility genes including members of the RET [4-6]. As described in the above
section, in the past seven years we collected genomic DNA samples from 64 HSCR patients in
central Taiwan and analyzed the coding regions of the RET and EDNRB gene by PCR amplification
and DNA sequencings. Even though only one point mutation at critical site for the signaling
pathways was identical in a pair of twin brothers, differences between patients and controls in allele
distribution of the five RET polymorphic sites are statistically significant.

Anorectal malformations (ARM) are diagnosed due to the absence or ectopic location of anus.
The incidence of associated ARM with Hirschsprung disease is variously reported from
0.4%-3.4% [7, 8]. ARM with syndromic Hirschsprung disease often associated with rectal ectasia,
a state of massive dilation of the rectum and distal sigmoid [9]. It may be primary presenting at
birth with characteristic features as a dilated recto sigmoid with a thin bowel wall without
hypertrophy of smooth muscles, or as rectal ectasia with balloon-like rectum [10], colonic intertia
[11], megarectum [12], and pseudo-Hirschsprung disease [13]. Some ARM patients developed
secondary rectal ectasia after birth as a result of bowel reaction to distal obstruction or inadequate
evacuation [14] postoperatively. We also collected anorectal malformations patients with
co-existing syndromic Hirschsprung disease (syndromic HSCR). The allele distributions of all five
RET SNPs of the syndromic HSCR patients do not statistically deviate from those of the normal
population. The results strengthen the association of specific RET SNP alleles with typical HSCR
in Taiwan.

Even though we have conducted the genetic analyses of the Hirschsprung disease and the
syndromic HSCR patients in Taiwan, we would like to further develop more sensitive and definite
molecular diagnosis and to identify more markers.

Methods:
Collecting samples
Tissue blocks

We retrieved tissue blocks from patients diagnosed as HSCR and related colonic neuropathies
diseases (HSCR with Down syndrome or anorectal malformation co-existing HSCR) at
Chung-Shan Medical University Hospital from 1999 to 2006.
Tissue collection

By now 21 different fresh tissue samples from pull-through operation separated as aganglionosis,
oligoganglionosis and normal ganglionosis segments. Besides, we also collected the tissues from
anorectal malformation co-existing HSCR patients. They are frozen in liquid nitrogen (small
quantity) and at —80C (larger quantity) for further protein analysis.
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Preparation of colon tissue protein extract and two-dimensional (2-D) gel electrophoresis

Total protein in the colon tissue will be extracted by homogenizing the tissues with a Polytron
homoginizer in the IPG (immubilized pH gradient) sample buffer for isoelectrophocusing (IEF).
After determination of the protein concentration in the extract, protein samples will be loaded to
IPG strips through rehydration. In our previous pilot studies, most of the proteins in the colon
samples will be present in the pH4-7 range. We have set the condition for using the pH 4-7, 18 cm
strips for the Ist dimension IEF (Tsai, Wu and Li, unpublished results). After the first dimension
IEF electrophoresis, the IPG strips will be equilibrated and analyzed for the second dimension by
gradient SDS polyacrylamide electrophoresis. The protein patterns will be detected by staining with
colloidal blue or silver stain. Basically, the protein samples form the same patient (aganglionosis vs
normal) will run in parallel for comparison. The protein patterns will be analyzed by Melanie 3.
After comparing the gels for differentially expressed spots, the spots will be excised, digested with
protease (such as trypsin) and then the peptide fragment will be analyzed by matrix-assisted laser

desorption/ionization time of fight (MALDI-TOF) mass spectrometry or mass/mass spectrometry.

Immunnohistochemisty

Sections will be deparaffinized, rehydrated, and endogenous peroxidase-blocked with 1% H,O,
in d;H,0. Antigen retrieval will be performed by autoclave using citrate buffer. After blocking with
antibody dilution (DakoCytomation), at room temperature with the Ist antibody are performed,
follow by a PBS(phosphate-buffer saline) rinse. A secondary antibody with peroxidase-conjugated
(horseradish peroxidase) is added. After, PBS rinsing, immunoreactivity is visualized by using

3,3 diaminobenzidine.
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Figurel: 2-DE analysis of HSP27 isoforms in normal and abnormal tissues of HSCR
patients.Proteins were separated by 2-DE followed by colloidal Coomassie brilliant blue staining.
The circles indicate the spots identified as HSP27 in normal and abnormal tissues from different
patients. Arrows highlight HSP27 isoforms.
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Figure2: 2-DE analysis of HSP27 isoforms in normal and abnormal tissues of anorectal
malformations co-existing syndromic HSCR patients: Proteins were separated by2-DE followed by
colloidal Coomassie brilliant blue staining. The circles indicate spots identified as HSP27 in normal

and abnormal tissues from different patients. Arrows highlight HSP27 isoforms
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Figure 3 Immunodetection of PRMT1 in HSCR.

Overall view of the intestinal wall in (A) normal ganglionosis, (B) oligoanglionosis and (C)
aganglonosis colon specimens. PRMT1 mucosal, submucosal and muscularis staining in normal
ganglionosis (D,GJ), oligoanglionosis (E,H,K) and aganglonosis (F,I,LL) colon specimens: positive
staining in all crypts, capillary endothelial cells (arrowhead) , submucosal and muscularis plexuses
(arrows). Absence of staining of hypertrophic nerve bundles (asterix).




Figure 4 Immunodetection of PRMTL1 in ARM.

Overall view of the intestinal wall in (A) normal, (B) dilated and (C) abnormal colon specimens.
PRMT1 mucosal, submucosal and muscularis staining in normal (D,GJ), dilated (E,H,K) and
abnormal (F,I,L) colon specimens: positive staining in all crypts, capillary endothelial cells

(arrowhead) , submucosal and muscularis plexuses (arrows). Scale bars: A-C:500 mm; D-L: 50 mm.




PEA R

B E AT v FAE 2 @7 HSCR s 4 & ¥ ' r B ¥ i sfen i > 0 2 e
MR DN A RBERFGE-H ORI FS T NRER LY L2 ThiRT B9 o
g AP ATy A R F ko i FRA 4TS G > HSP27 (pl 6.8):4 IE ¢ F >t HSP27 (pl
58)> = HSCREZ ARM A ¥ t ¥ e A e LFhi dH> 2 F BHEDLIENE
g% o L HSP27 2 REHZ R & HSCR R R FIAP M 122 2 % > & 2B
Fw| S R AT e 4 A B_o 2 B4 PRMTI %% 3 & ki > $3 % & HSCR 27 & i %

27

EARM A RED T - BRRARNESE c EI RV FFAFH OREFURT Y o



