English  |  正體中文  |  简体中文  |  Items with full text/Total items : 17938/22957 (78%)
Visitors : 7399117      Online Users : 270
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://ir.csmu.edu.tw:8080/ir/handle/310902500/11862


    Title: Intravitreal homocysteine-thiolactone injection leads to the degeneration of multiple retinal cells, including photoreceptors.
    Authors: Chang, HH
    Lin, DP
    Chen, YS
    Liu, HJ
    Lin, W
    Tsao, ZJ
    Teng, MC
    Chen, BY
    Contributors: 中山醫學大學
    Date: 2011
    Issue Date: 2015-07-30T09:19:39Z (UTC)
    Abstract: PURPOSE:
    Hyperhomocysteinemia is known to cause degeneration of retinal ganglion cells, but its influence on photoreceptors remains largely unknown. In particular, the role of homocysteine-thiolactone (Hcy-T)--the physiologic metabolite of homocysteine that has been proven to be more cytotoxic than homocysteine itself--as a factor that causes retinopathy, has not been defined. This study aimed to investigate the toxic effects of excessive Hcy-T in a mouse model.
    METHODS:
    A total of 60 six-week-old female ICR mice were used in this study. The mice were divided into 3 experimental groups and 2 control groups. The mice in the experimental groups were subjected to intravitreal injections of Hcy-T to reach final estimated intravitreal concentrations at 5, 25, and 200 μM, respectively. Mice without injection (blank) and with 0.9 NaCl injections (sham injection) were used as controls. The mice with 200 μM Hcy-T were sacrificed at days 7, 15, 45, and 90 after injection and the mice with 5 or 25 μM Hcy-T were sacrificed at day 90, with the controls sacrificed at day 15 or 90 for comparison. Semi-quantitative dot-blot analysis was performed for confirmation of retinal homocysteinylation. The mouse retinas were evaluated microscopically, with the thickness of total and specific retinal layers determined. Immunohistochemical analysis was performed and the labeled cells were quantified to determine the effects of excessive Hcy-T on specific retinal cells.
    RESULTS:
    Dose-dependent retinal homocysteinylation after Hcy-T injection was confirmed. The homocysteinylation was localized in the outer and inner segments of photoreceptors and the ganglion cell layer (GCL). Retinal cell degenerations were found in the GCL, inner nuclear layer, and outer nuclear layer at day 90 after 200 µM Hcy-T injection. Significant thickness reduction was found in the total retina, outer nuclear layer, and the outer and inner segment layers. A trend of thickness reduction was also found in the GCL and inner nuclear layer, although this was not statistically significant. The rhodopsin⁺ photoreceptors and the calbindin⁺ horizontal cells were significantly reduced at day 15, and were nearly ablated at day 90 after 200 μM Hcy-T injection (p<0.001 for both day 15 and day 90), which was not seen in the sham injection controls. The Chx-10⁺ or the Islet-1⁺ bipolar cells and the Pax-6⁺ amacrine cells were severely misarranged at day 90, but no significant reduction was found for both cell types. The GFAP⁺ Müller cells were activated at day 15, but were not significantly increased at day 90 after the injection.
    CONCLUSIONS:
    Excessive retinal homocysteinylation by Hcy-T, a condition of hyperhomocysteinemia, could lead to degeneration of photoreceptors, which might lead to retinopathies associated with severe hyperhomocysteinemia or diabetes mellitus.
    URI: https://ir.csmu.edu.tw:8080/ir/handle/310902500/11862
    Relation: Mol Vis. 2011;17:1946-56. Epub 2011 Jul 19.
    Appears in Collections:[醫學檢驗暨生物技術學系暨碩士班] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html期刊論文0KbHTML343View/Open


    SFX Query

    All items in CSMUIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback