English  |  正體中文  |  简体中文  |  Items with full text/Total items : 17927/22943 (78%)
Visitors : 7405311      Online Users : 106
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://ir.csmu.edu.tw:8080/ir/handle/310902500/10605


    Title: MEK inhibition enhances bleomycin A5-induced apoptosis in an oral cancer cell line: signaling mechanisms and therapeutic opportunities.
    Authors: Yang, LC
    Yang, SH
    Tai, KW
    Chou, MY
    Yang, JJ
    Contributors: 中山醫學大學
    Date: 2004
    Issue Date: 2015-04-10T07:23:34Z (UTC)
    Abstract: BACKGROUND:
    Bleomycin A5 is an anti-neoplastic glycoprotein antibiotic used for the treatment of various cancers. Previous work has shown that bleomycin A5 exerts its apoptotic effects on tumor cells. This was to study the signal transduction pathways that might exert the apoptotic effects of bleomycin A5 on tumor cells, as well as to examine the possibility of lower dosing of such drug in combinative treatment with other compounds in vitro.
    METHODS:
    Bleomycin A5 was applied on a human oral epidermoid carcinoma cell line, human oral epidermoid carcinoma (KB), and the apoptotic activity was determined by the presence of DNA fragmentation and 4,6-diamidino-2-phenylindole (DAPI) nuclear staining. The signal transduction pathway was measured through Western blotting and in vitro kinase assay.
    RESULTS:
    The apoptotic effect was associated with the sustained activation of c-Jun N-terminal kinases (JNK) and the inhibition of extracellular signal-regulated kinases1 (ERK1) and -2 activities, suggesting that JNK plays a positive role in the death process. ERK1 and -2 might exert a protection pathway from cell death. Here, it was determined that a combination treatment of bleomycin A5 and the MAP kinase-ERK kinase (MEK) inhibitor, PD98059, could lead to enhanced apoptosis. The activities of ERK1 and -2 are required for cell survival signaling using stable cell clones expressing MEK1. Upon bleomycin A5 treatment, cells expressing MEK1 exhibited significant delays in the onset of apoptosis, where the presence of MEK1 inhibitor enhanced cell death. Moreover, the increased activity of ERK1 and -2 coincided with cell survival. The survival signals exerted by MEK1 most likely result from the activation of ERK1 and -2.
    CONCLUSIONS:
    The apoptosis enhancement through such combinative treatment in vitro has revealed new therapeutic opportunities and elucidated mechanisms contributing to the efficacy of existing anti-cancer treatments.
    URI: https://ir.csmu.edu.tw:8080/ir/handle/310902500/10605
    Relation: J Oral Pathol Med. 2004 Jan;33(1):37-45.
    Appears in Collections:[牙醫學系暨碩士班] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html報導0KbHTML361View/Open


    SFX Query

    All items in CSMUIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback