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Some Properties of Pure Codes†

C. C. Huang∗

Department of Information Management Science, Chung Shan Medical University,
Taichung, Taiwan 402

Abstract

In this paper, we show some properties of pure codes and give several characterizations
on two-element pure codes. It can be shown that a language is a solid code if and only if
it is a comma-free code which is also a d-code. We also show that d-codes, intercodes and
solid codes are pure code.

Keywords: comma-free code, d-code, intercode, pure code.

1. Introductions

Codes are formal languages with special combinatorial and structural properties which
are exploited in information processing or information transmission. To investigate proper-
ties of codes, one may discuss the relationships among all classes of codes. The relationships
construct the hierarchy of classes of codes that we have seen from ([6], [13]). For instance,
the class of the solid codes ([2], [9]) lie below the class of comma-free codes ([1]) in the
hierarchy of classes of codes.

The notion of pure languages was introduced in ([5]). Subsequently, the concept of the
pure code turns up the property of the preserving homomorphisms. There is compelling
evidence that if the image of alphabet is a pure code by a homomorphism, then the
homomorphism is primitivity-preserving-homomorphism ([8]). The concept of pure code
gives rise to a motivation for studying the properties of pure codes and investigating the
relationships with others. The relationship between the class of pure codes and the class
of d-codes is investigated in ([3]). Therefore, beside the relationships discussed among the
classes of codes, some characteristics of pure codes, comma-free codes, d-codes and solid
codes will be studied in this paper.

This paper is organized into several sections. The first section introduces the overview
of this paper. In the second section, we will display some well-known definitions and
properties applied in this paper. To investigate the relationship among comma-free codes,
d-codes and solid codes, some properties of d-codes should be explored. In the third
section, we can get some characteristics of the d-codes. Moreover, we intend to explore the
result that a language is a solid code if and only if it is a d-code and also a comma-free
code in the fourth section. Finally, some properties of pure codes is studied. Meanwhile,
as will become evidence that d-codes, solid codes, comma-free codes and intercodes are
pure codes.

† This work was supported by the National Science Council R.O.C. under Grant NSC 95-2115-M-040-

001. AMS Subject Classification: 68R15
∗ E-mail: cchuang@csmu.edu.tw
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2. Definitions and Preliminaries

Let X be a finite alphabet and X∗ the free monoid generated by X. Any element of
X∗ is called a word. The length of a word w is the number of letters occurring in w and
denoted by lg(w). Any subset of X∗ is called a language. Let X+ = X∗ \ {1} where 1 is
the empty word. A word w ∈ X+ is said to be primitive if w = fn with f ∈ X+ always
implies n = 1. Let Q denote the set of all primitive words. For a word w ∈ X+, there
exists a unique primitive word f and a unique integer i ≥ 1 such that w = f i. Let f =

√
w

and call f the root of w. For two words u, v ∈ X+, we denote by v ≤p u if v ∈ P (u) and
denote by v ≤s u if v ∈ S(u). A word x ∈ X+ is said to be non-overlapping if x = uy = yv
for some y, u, v ∈ X∗ implies y = 1. Let D(1) be the set of all non-overlapping words.

For a given word x ∈ X+, we define the following sets.

P (x) = {y ∈ X+|x ∈ yX∗}, P̄ (x) = {y ∈ X+|x ∈ yX+},
S(x) = {y ∈ X+|x ∈ X∗y}, S̄(x) = {y ∈ X+|x ∈ X+y},
E(x) = {y ∈ X+|x ∈ X∗yX∗}, Ē(x) = {y ∈ X+|x ∈ X+yX∗ ∪ X∗yX+}.

A language L ⊂ X+ is a code if x1x2 · · ·xn = y1y2 · · · ym, xi, yj ∈ L implies that
m = n and xi = yi, i = 1, 2, ..., n. We review the definitions of some codes used in this
paper: a code L is a prefix code (suffix code) if the condition L∩LX+ = ∅ (L∩X+L = ∅)
is true. A code L is a bifix code if L is both a prefix code and also a suffix code. A code
L is an infix code if for all x, y, u ∈ X∗, u ∈ L and xuy ∈ L together imply x = y = 1.
A code L is an intercode if Lm+1 ∩ X+LmX+ = ∅, m ≥ 1. The integer m is called the
index of L. An intercode of index one is called a comma-free code. A code L is a d-code if
L is a bifix code and P (L) ∩ S(L) = L. Given a set L ⊆ X+, any word w ∈ X+ can be
represented as: w = x1y1x2y2 · · ·xnynxn+1, where yj ∈ L, j = 1, 2, . . . , n, E(xi) ∩ L = ∅,
i = 1, 2, . . . , n+1. If E(w)∩L = ∅ or L = ∅, then we let w = x1. Any such representation
of w is called an L-representation of w. A code L is a solid code if for any w ∈ X+ there
is a unique L-representation. In the following, we review some results used in the rest of
this paper.

Lemma 2.1 ([4]) Let u, v ∈ Q with u 6= v. Then umvn ∈ Q for all m ≥ 2, n ≥ 2.

Lemma 2.2 ([7]) Let uv = f i, u, v ∈ X+, f ∈ Q, i ≥ 1. Then vu = gi for some g ∈ Q.

Lemma 2.3 ([4]) If uv = vu, u, v ∈ X+, u 6= 1, v 6= 1, then u, v are powers of a common
word.

Lemma 2.4 ([3]) If uv = vz, u, v, z ∈ X∗ and u 6= 1, then u = (pq)i, v = (pq)jp, z = (qp)i

for some p, q ∈ X∗, i ≥ 1, j ≥ 0 and pq, qp ∈ Q.

Lemma 2.5 ([10]) If uqm = gk for some m, k ≥ 1, u ∈ X+ and g ∈ Q with u /∈ q+. Then
q 6= g and lg(g) > lg(qm−1).

Lemma 2.6 ([12]) Let x1, x2, y1, y2 ∈ X+ be such that x1y1 ∈ Q. If x1y1 = x2y2 and
y1x1 = y2x2, then x2 = x1 and y2 = y1.
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Lemma 2.7 ([11]) Let X be an alphabet at least two letters and let L ⊆ X+ be an
intercode of index n with n ≥ 1. Then for every m, m ≥ n, L is an intercodes of index m.

3. Some Properties of d-codes

A language L ⊆ X+ is said to be a d-code, which is introduced by Y. Y. Lin in ([3]),
if L is a bifix code and P (L) ∩ S(L) = L. To investigate the relationships among d-codes,
comma-free codes and solid codes, we study some properties of d-codes in this section.

Proposition 3.1 ([3]) Let L ⊆ X+. The following statements are equivalent:
(1) L is a d-code.
(2) Any proper prefix of a word in L is not a suffix of any word in L and any proper suffix

of a word in L is not a prefix of any word in L.
(3) For any u, v ∈ L, if there exists x ∈ X+ such that x ≤p u, x ≤s v, then x = u = v.

From the above result, the following conclusions are given immediately.

Proposition 3.2 If L is a d-code, then for every u, v ∈ L, P (u)∩ S(v) 6= ∅ implies u = v.

Proof. It is clear.

Proposition 3.3 Let L ⊆ X+. L is a d-code if and only if L is a bifix code and P̄ (L) ∩
S̄(L) = ∅.
Proof. It is clear from Proposition 3.2 and the definition of d-codes.

4. The Relationships of Families of d-codes, Comma-free Codes and Solid

Codes

In ([2]), Shyr had shown that a solid code is a comma-free code. The converse is not
true. For example, {aba} is a comma-free code. But the word ababa = ab(aba) = (aba)ba
has two different L-representations, by the definition of solid codes, {aba} is not a solid
code. Beside the known relationship which the family of solid code is contained in the
family of comma-free code, the relationships among the families of d-codes, comma-free
codes and solid codes will be studied in this section. In fact, the family of solid codes is
the intersection of the family of comma-free codes and the family of d-codes. Before the
result is explored, we review some characteristics of solid codes used in this section.

Proposition 4.1 ([1]) Let X be an alphabet and let L ⊆ X+. If L is a solid code, then L
is a comma-free code and hence an infix code.

Proposition 4.2 ([10])L is a solid code if and only if every two words u, v ∈ L satisfy the
following conditions:
(1) P̄ (u) ∩ S̄(v) = ∅.
(2) If u 6= v, then u /∈ E(v) and v /∈ E(u).
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In the following, the relationships are investigated among solid codes, comma-free
codes, and d-codes.

Proposition 4.3 Let L ⊆ X+. Then the following statements are equivalent:
(1) L is a solid code.
(2) L is an infix d-code.
(3) L is a comma-free code with P̄ (L) ∩ S̄(L) = ∅.
Proof. ((2) ⇒(1)) Suppose that L is an infix d-code. Since L is a d-code, by Proposition
3.2, P̄ (u) ∩ S̄(v) = ∅ for every u, v ∈ L. In the meanwhile, since L is an infix code, either
u ∈ E(v) or v ∈ E(u) will imply u = v. Hence, by Proposition 4.2, L is a solid code .

((1) ⇒ (2)) Suppose L is a solid code. Then, by Proposition 4.1, L is an infix code
and hence a bifix code. Since L is an infix code, either u ∈ E(v) or v ∈ E(u) implies that
u = v for any u, v ∈ L. Thus P̄ (u) ∩ S̄(v) = ∅ for all u, v ∈ L with u 6= v. Hence, by
Proposition 3.3, L is a d-code.

((3) ⇒ (1)) Since L is a comma-free code, L is an infix code. Then either u ∈ E(v) or
v ∈ E(u) implies that u = v for every u, v ∈ L. This in conjunctive with P̄ (L) ∩ S̄(L) = ∅
and Proposition 4.2 yields that L is a solid code.

((1) ⇒ (3)) Suppose that L is a solid code. Then by Proposition 4.1 and 4.2, L is a
comma-free code with P̄ (L) ∩ S̄(L) = ∅.

Proposition 4.4 Let L ⊆ X+. L is a solid code if and only if L is a d-code and also a
comma-free code.

Proof. (⇒) From Proposition 4.1 and 4.3, the result is clear.
(⇐) Let L be a d-code and a comma-free code. Suppose that L is not a solid code. Then,
by Proposition 4.2, there exist u 6= v ∈ L such that P̄ (u)∩ S̄(v) 6= ∅, v ∈ E(u) or u ∈ E(v).
Since P̄ (u) ∩ S̄(v) 6= ∅, L is not a d-code. In the meanwhile, either u ∈ E(v) or v ∈ E(u)
implies that L is not a comma-free code. Therefore, as L is a d-code and also a comma-free
code, it implies that L is a solid code.

5. Pure Codes

A language L is pure code if it is a code such that for any x ∈ L∗,
√

x ∈ L∗. To inves-
tigate the relationship between pure code and others. In this section, the characteristics
of pure codes will be investigated first. We have the following result.

Proposition 5.1 Every pure code is contained in Q.

Proof. Let L be a pure code. Suppose that L is singleton, that is, L = {u}. If u = fn

with n ≥ 2 where f ∈ Q, then u ∈ L∗ but
√

u = f /∈ L∗. Hence L = {u} is not pure, a
contradiction. Thus u ∈ Q. Next, suppose that L contains two or more words. Let u =
f i ∈ L, i ≥ 2. Since L is pure, f =

√
u ∈ L∗. Let f = u1u2 · · ·un, uk ∈ L \ {u}, 1 ≤ k ≤ n.

Thus u = f i = (u1u2 · · ·un) · · · (u1u2 · · ·un). This contradicts that L is a code.

Let A ⊆ X+ be a code. A word x ∈ A∗ is a root word constructed by A if x = fn, n ≥
1, f ∈ A+ always implies n = 1 and x = f. For a code A ⊆ Q, let QA be the set of all
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root words constructed by A. Similar to the definitions of Q(i), i ≥ 1, Q
(1)
A = {1} ∪ QA

and Q
(i)
A = {f i|f ∈ QA} for any i ≥ 2. For any x ∈ A∗, it is clear that if x ∈ Q, then

x ∈ QA. But the converse is not true. For example, let A = {aba, b}. Then the word
x = (aba)b = (ab)2 ∈ A∗. By the definition of root word constructed by A, (ab)2 ∈ QA,
but (ab)2 6∈ Q. In the following proposition, we will show that A is pure if and only if for
every x ∈ A∗, x ∈ QA implies x ∈ Q.

Proposition 5.2 Let X be an alphabet and A ⊆ Q be a code. Then A is pure if and only
if every root word x constructed by A is primitive.

Proof. Assume that A is pure. Suppose that there exists a word in QA which is not
primitive. Let x ∈ A+ and x ∈ QA \ Q. Since x /∈ Q, let x = fn, n ≥ 2, f ∈ Q. However,
x ∈ QA implies f /∈ A∗. That is, x ∈ A∗ and

√
x /∈ A∗. It contradicts that A is pure.

Conversely, suppose that A is not pure. Then there exists x ∈ A∗ such that
√

x /∈ A∗. (1)
If x ∈ QA, then x /∈ Q. Indeed, if x ∈ Q, then x ∈ QA. This implies that

√
x = x ∈ A∗, a

contradiction. (2) If x /∈ QA, then there exist g ∈ QA and m ≥ 2 such that x = gm. Since
x = fn, f /∈ A∗, we have gm = fn. But from g ∈ QA ⊆ A∗ and f /∈ A∗, there exists i ≥ 2
such that g = f i. Thus g ∈ QA and g /∈ Q, a contradiction.

Proposition 5.3 Let L = {u, v} ⊆ Q. If L is a pure code, then uv ∈ Q.

Proof. Suppose that uv /∈ Q. Let uv = fn, n ≥ 2, f ∈ Q. Then there exist f1, f2 ∈ X+

such that u = fkf1, v = f2f
n−k−1 with f = f1f2 where n − 1 ≥ k ≥ 0. We have the

following cases:
(1) k = 0. Then u = f1, v = f2f

n−1. Thus lg(u) < lg(f) < lg(v). This case implies that
f /∈ L∗.

(2) n − 2 ≥ k ≥ 1. Since u = fkf1, v = f2f
n−k−1, we get lg(f) < lg(u) and lg(f) < lg(v).

This case also implies that f /∈ L∗.
(3) k = n − 1. Then u = fkf1, v = f2. Thus lg(v) < lg(f) < lg(u). This case also implies

that f /∈ L∗.

From (1), (2) and (3), uv ∈ L∗ \Q implies
√

uv /∈ L∗. This contradicts that L is pure
code. Hence uv ∈ Q.

In the following, we give a characterization for {u, v} ⊆ Xn which is a pure code. It
needs the following property.

Lemma 5.4 Let x, y ∈ X+. Then yx ≤p xmy, m ≥ 1 if and only if
√

x =
√

y.

Proof. (⇐) Immediate.
(⇒) Let yx ≤p xmy and x, y ∈ X+. If m = 1, then yx = xy. Thus, by Lemma 2.3,√

x =
√

y. So we will consider the case m ≥ 2. There are the following three cases:
(1) y ≤p xm−1. If y = xm−1, then

√
x =

√
y. We consider y <p xm−1. Note that

yx <p xm. There exists x1, x2 ∈ X+ with x = x1x2 such that yx = xjx1, where
1 ≤ j ≤ m − 1. Since yx = yx1x2 = xjx1 = x1(x2x1)

j , we get x1x2 = x2x1. Hence,
by Lemma 2.3,

√
x1 =

√
x2 =

√
x. This in conjunctive with y = xj−1x1 yields that√

y =
√

x1 =
√

x.
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(2) xm−1 <p y ≤p xm. If y = xm, then
√

x =
√

y. Hence xm−1 <p y <p xm. There exist
x1, x2 ∈ X+ such that y = xm−1x1 and x = x1x2. Since y <p xm, yx <p xm+1.
Thus xm−1x1x1x2 <p xm−1(x1x2)

2. This yields that x1x2 = x2x1. Hence, by Lemma
2.3 again,

√
x1 =

√
x2 =

√
x. This in conjunctive with y = xm−1x1 yields that√

y =
√

x1 =
√

x.
(3) xm <p y. There exist y1, y2 ∈ X+ such that y = y1y2 and y1 = xm. Since yx ≤p xmy,

y2x ≤p y = xmy2. If lg(y2) ≤ lg(xm), then this condition is similar to Cases (1)
and (2). It yields that

√
x =

√
y
2
. This in conjunctive with y = xmy2 yields that√

y =
√

x. If lg(y2) > lg(xm), then there exist k ≥ 1, y′ ∈ X+ such that y = (xm)ky′

where lg(y′) ≤ lg(xm). Again, it is similar to Cases (1) and (2) and yields
√

x =
√

y.

Proposition 5.5 Let u 6= v ∈ Q with lg(u) = lg(v). Then {u, v} is pure code if and only
if uv ∈ Q.

Proof. (⇒) By Proposition 5.3, the result is clear.
(⇐) Let uv ∈ Q. Suppose that L = {u, v} is not a pure code. Then there exists a word

x ∈ L∗ \Q with minimal length such that x = x1x2 · · ·xm = fn, where f ∈ Q\QL, m, n ≥
2, xi ∈ {u, v}, 1 ≤ i ≤ m. Since

√
x = f /∈ L∗, we have that f+ /∈ u∗ ∪ v∗. This implies

that uv ∈ E(x) or vu ∈ E(x). From Lemma 2.2, the only considered case is that x1 = u
and xm = v. That is, u <p x = fn, v <s x = fn. We will consider the following cases:
(1) lg(f) = lg(u) = lg(v). Then u = f = v, this contradicts to u 6= v.
(2) lg(f) < lg(u) = lg(v). By Lemma 2.2, let x = ui1vj1 · · ·uirvjr , where ik, jk ≥ 1, 1 ≤

k ≤ r with i1 + · · ·+ ir + j1 + · · ·+ jr = m, i1 ≥ ik for all k. As i1 ≥ 2, by Lemma 2.1,
we have that vj1 · · ·uirvjr ∈ Q. And by Lemma 2.5, lg(f) > lg(ui1−1) ≥ lg(u). This
contradicts that lg(f) < lg(u). Hence i1 = 1. This implies that ik = 1 for 1 ≤ k ≤ r.
Now by Lemma 2.2, we let x = uvj1 · · ·uvjr , where jr ≥ jk for all k. It yields that
u2 /∈ E(x). As jr ≥ 2, by Lemma 2.1, we have that uvj1 · · ·u ∈ Q. And by Lemma
2.5, lg(f) > lg(vjr−1) ≥ lg(v). This contradicts that lg(f) < lg(v). Hence jr = 1 and
jk = 1 for 1 ≤ k ≤ r. It yields that v2 /∈ E(x). Since u2, v2 /∈ E(x) and lg(x) is
minimal, x = uv = fn. This contradicts that uv ∈ Q.

(3) lg(f) > lg(u) = lg(v). There exists a number 1 < k < m such that f =
x1x2 · · ·xk−1xk1, fn−1 = xk2xk+1 · · ·xm and xk = xk1xk2 where xk1, xk2 ∈ X+.
Since L = {u, v} ⊂ Q and lg(u) = lg(v), the case xk = u will be considered. The
other case xk = v is similar. To consider the case xk = u, we have the following two
cases:

(3-1) xk+1 = u. Since x1 = u = xk1xk2 <p f and xk2xk+1 · · ·xm = fn−1, this yields
that xk2xk1 = xk1xk2. By Lemma 2.3, xk1, xk2 are powers of a common word. Thus
u = wk1wk2 /∈ Q. This contradicts that u ∈ Q.

(3-2) xk+1 = v. Since lg(u) = lg(v), there exists a word v1 <p v such that u = xk1xk2 =
xk2v1. By Lemma 2.4, we have that

xk1 = (pq)i1 , xk2 = (pq)j1p, v1 = (qp)i1 (4 − 2)

for some p, q ∈ X∗ with pq ∈ Q and i1 ≥ 1, j1 ≥ 0. Thus u = (pq)i1+j1+1p. We
consider two subcases:

6



(3-2-1) xk−1 = u. Since xm = v <s f and f = x1x2 · · ·xk−1xk1, there exists a word
u2 <s xk−1 = u such that v = u2xk1. This in conjunctive with lg(u) = lg(v)
yields that lg(xk2) = lg(u2) and u2 = xk2. Thus v = xk2xk1. From Equation
(4-2), v = (pq)j1p(pq)i1 . Since v1 <p v, (qp)i1 <p (pq)j1p(pq)i1 . If j1 ≥ 1, then
pq = qp. By Lemma 2.3, u, v are powers of a common word. This implies that
uv /∈ Q. This contradicts that uv ∈ Q. If j1 = 0, then u = (pq)i1+1p. Since
(qp)i1 <p p(pq)i1 and i1 ≥ 1, we get qp <p ppq. By Lemma 5.4, we have that√

p =
√

q, i.e., u, v are powers of a common word. Again, this implies that uv /∈ Q
and this contradicts that uv ∈ Q.

(3-2-2) xk−1 = v. Since xm = v <s f = x1x2 · · ·xk−1xk1 and lg(u) = lg(v), there exists a
word v1, v2 ∈ X+ with v = v1v2 such that v = v2xk1. That is, v1v2 = v2xk1. By
Lemma 2.4,

v2 = (rs)j2r, v1 = (rs)i2 , xk1 = (sr)i2 (4 − 3)

where r, s ∈ X∗ with rs ∈ Q and i2 ≥ 1, j2 ≥ 0. From Equations (4-2) and
(4-3), (qp)i1 = v1 = (rs)i2 and (pq)i1 = xk1 = (sr)i2 . Since pq, qp, rs, sr ∈ Q,
qp =

√
v1 = rs and pq =

√
xk1 = sr. By Lemma 2.6, r = q and s = p. Thus u =

(pq)i1+j1+1p and v = (qp)i2+j2+1q. This implies that uv = (pq)i1+j1+i2+j2+3 /∈ Q,
a contradiction.

In the following, we will show that d-codes, solid codes, comma-free codes and inter-
codes are pure codes. Before we explore the relationships between pure code and others,
it can be shown that every subset of a pure code is a pure code and the intersection of two
pure codes is a pure code.

Lemma 5.6 Let A be a pure code and B ⊆ A. If B 6= ∅, then B is a pure code.

Proof. Let w ∈ B∗. If w = 1, then
√

w = 1 ∈ B∗. Let w ∈ B+. It can get that
w ∈ B+ ⊆ A+. Suppose that

√
w /∈ B∗. Since A is a pure code, by the definition of the

pure code,
√

w ∈ A∗. Let
√

w = w1w2 · · ·wi · · ·wn where wi ∈ A for some i . Then there
exists code word wk ∈ A occurred in

√
w such that wk occurred in w for some k. This

contradicts that w ∈ B+. Hence
√

w ∈ B∗. We can conclude that B is a pure code.

Lemma 5.7 Let A, B be pure codes and C = A ∩ B. If C 6= ∅, then C is a pure code.

Proof. Let w ∈ C∗. Since w ∈ C+ = (A ∩ B)+ ⊆ A+ and A is a pure code, by Lemma
5.7, one have that

√
w ∈ A+. Similarly,

√
w ∈ B+. That is,

√
w ∈ A+ ∩ B+. This implies

that
√

w ∈ (A ∩ B)+ = C+. Hence C is a pure code.

Proposition 5.8 ([3]) Every d-code is a pure code.

Proposition 5.9 An intercode of index greater than or equal to 2 is a pure code.

Proof. Let L be an intercode of index m ≥ 2. Suppose that L is not a pure code.
Then there exists a word w ∈ L∗ such that

√
w /∈ L∗. This implies that

√
w 6= w. Thus
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w /∈ Q. Suppose that w = f i, i ≥ 2 where f ∈ Q. Note that
√

w = f /∈ L∗. Let
w = u1u2 · · ·un = f i, where n ≥ 1 and uj ∈ L for 1 ≤ j ≤ n and for every j < n,

u1u2 · · ·uj /∈ f+. (4 − 4)

We consider the following three cases: (1) n = 1; (2) n = 2; (3) n ≥ 3.
(1) n = 1. Then w = u1 = f i, i ≥ 2. This contradicts that L is an intercode.
(2) n = 2. Then w = u1u2 = f i, i ≥ 2. Since L is an intercode and f /∈ L∗, there

exist f1, f2 ∈ X+, i0, j0 ≥ 0 such that u1 = f i0f1, u2 = f2f
j0 where f = f1f2 and

i0 + j0 = i − 1. Let m ≤ 2k where k ≥ 1.
(2-1) If i0 = 0, then u1 = f1, u2 = f2f

j0 , j0 ≥ 1 and u1u2 = f j0+1. As we consider
(u2u1)

ku2 ∈ L2k+1,

(u2u1)
ku2 = (f2f

j0f1)
kf2f

j0 = f2(f
j0f1f2)

kf j0 = f2(f
j0+1)kf j0

= f2(u1u2)
kf j0 ∈ f2L

2kf j0 ⊆ X+L2kX+.

Thus L is not an intercode of index of 2k. Since m ≤ 2k, by Lemma 2.7, L is not
an intercode of index m, a contradiction.

(2-2) If i0 ≥ 1, then u1 = f i0f1, u2 = f2f
j0 , j0 ≥ 0 and u1u2 = f i0+j0+1. As we consider

(u1u2)
ku1 ∈ L2k+1,

(u1u2)
ku1 = (f i0f1f2f

j0)kf i0f1 = (f i0+j0+1)kf i0f1 = f(f i0+j0+1)kf i0−1f1

= f(u1u2)
kf i0−1f1 ∈ fL2kf i0−1f1 ⊆ X+L2kX+.

Thus L is not an intercode of index of 2k. Since m ≤ 2k, by Lemma 2.7, L is not
an intercode of index m, a contradiction.

(3) n ≥ 3. From Equation (4-4), for any j = 2, 3, . . . , n−1, uj 6≤p f, uj 6≤s f and f 6≤p uj ,
f 6≤s uj . Hence for any j = 2, 3, . . . , n−1, there exist f1, f2, f3, f4 ∈ X+ and r, s, t ≥ 0
such that f = f1f2 = f3f4 and u1u2 · · ·uj−1 = f rf1, uj = f2f

tf3, uj+1 · · ·un = f4f
s.

Thus u1u2 · · ·un = f r+s+t+2. As we consider (ujuj+1 · · ·unu1 · · ·uj−1)
kuj ∈ Lnk+1,

(ujuj+1 · · ·unu1 · · ·uj−1)
kuj = (f2f

tf3f4f
sf rf1)

kf2f
tf3

= (f2f
r+s+t+1f1)

kf2f
tf3

= f2(f
r+s+t+1f1f2)

kf tf3

= f2(f
r+s+t+2)kf tf3

∈ f2L
nkf tf3

⊆ X+LnkX+.

Thus L is not an intercode of index of nk. Since m ≤ 2k < nk, by Lemma 2.7, L is
not an intercode of index m, a contradiction.

From above cases (1), (2) and (3), we can conclude that L is a pure code.

An intercode of index one is called a comma-free code. From Lemma 2.7, comma-free
code is the subset of the intercode with index greater than 2. This conjunctive with Lemma
5.6 and Proposition 5.9 yields the following result.
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Corollary 5.10 Every comma-free code is a pure code.

Moreover, from Proposition 4.4, a solid code is the intersection of a d-code and a
comma-free code. This conjunctive with Lemma 5.7 yields the following result.

Corollary 5.11 Every solid code is a pure code.
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