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Abstract— While conventional learning theory focus on train-
ing a fault free neural network model, fault tolerant learning aims
at training a neural network that is able to tolerate anticipated
fault. This paper presents a survey on the previous work done for
fault tolerant neural network and proposes an objective function
based framework for fault tolerant learning. In accordance with
the objective functions derived for different types of network
faults, algorithms for attaining a good fault tolerant neural
network have thus been developed. By comparing those objective
functions for fault tolerant learning with weight decay, it is found
that training by adding weight decay can also improve the fault
tolerance of a neural network.
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I. I NTRODUCTION

In conventional learning theory, the primary objective of a
learning algorithm is to attain a neural network (NN) of least
mean prediction error, i.e. good generalization. To accomplish
this, one approach is by the idea of adding regularizer [28],
[27], [33], [34] to penalize the weights’ magnitude. Another
approach is by the idea of pruning [20], [25], [29], [27],
[44], [39]. In which a NN is trained by a learning algo-
rithm, and then redundant weights are identified and removed.
The purposes of weight penalization and redundant weights
removal are essential the same – to reduce the complexity
of a NN. In accordance with the statistical learning theory
1 over-complexity can always lead to poor generalization
(over-fit). Therefore, one can see that the primary focus in
conventional learning theory is to seek for a NN that is of
minimal complexity.

All these theories apply well to any problem, if the trained
NN is hard-coded in an application software that is running in
a computer. How about the trained NN is needed to be embed-
ded in a digital hardware, like FPGA, for real time application.
Component failure, low precision floating point representation
and thermal noise will then affect the actual implementation
of such a trained NN. The discrepancy between the hardware
implemented NN and its computer simulated counterpart will
lead to different types of faults to the network, such as
accidentally node die, weight perturbations and etc. All these
faults can also affect the performance of theimplementation
of a NN.

Consider that a trained NN has gone through the pruning
step. All its redundant nodes must have been removed. Any
one of reminding node is important to contribute to the output

1Please refer to Chapter 9 in [8] and Chapter 7 in [21]

of the network. Then, the resultant network model is imple-
mented in an FPGA. Imagine that one node is accidentally
death, due to component failure. No doubt, the performance
of the implemented NN will be drastically degraded.

This phenomena has been mentioned in many papers, such
as in [41], [51]. A NN of good generalization might not be
able to tolerate network fault. However, not much theoretical
work has been reported in the literature relating those issues
in regard to generalization and fault tolerance. Many questions
are left to be answered. Let us point out a few.

• In conventional learning, training a NN is determined by
an objective function which the learning algorithm apply.
For fault tolerant learning, not all existing algorithms are
defined based upon objective functions. Some of them are
designed by heuristic. Is it possible to find the objective
functions for them ?

• Algorithm like weight decay used to be applied in training
a NN of good generalization has also been applied in
training a NN of good fault tolerance. Does it mean that
weight decay should be an universal technique for NN
learning ?

• If the objective functions are found, what are their sim-
ilarities, differences and relationships with those defined
in conventional learning ?

This paper initiates the first step by proposing an objective
function based framework for fault tolerant learning. The pur-
pose is to provide a partial answer to the first and the second
questions. With the objective function derived for different
types of fault models, comparison can be made amongst
existing fault tolerant training methods and regularization-
based training methods.

The rest of the paper will be organized as follows. In
the next section, a background survey on the research works
related to fault tolerant NNs will be elucidated. The proposed
framework is presented in Section 3 to Section 5. The conclu-
sion is presented in Section 6.

II. BACKGROUND SURVEY

A. Research works on the analysis of FTNN

Consider a Madaline is with threshold logic output neuron,
Stevensonet al [48] gave a comprehensive analysis on the
probability of output errordue to different type of noises, such
as input and weight noise, both additive and multiplicative.
For multilayer perceptron, Choi and Choi [15] from statistical



TABLE I
RESEARCH WORKS ON THE ANALYSIS OF A FAULT TOLERANTNN.

Ref. Fault NN Work
[48] Any weight noise Madaline Probility of output error
[15] Any noise Any Output sensitivity measure
[43] Any noise Madaline Precision requirement
[10] Mul. weight noise RBF Generalizaton ability
[54] Any noise RBF Output sensitivity matrix
[2] Any weight noise MLP Output sensitivity measure
[41] - - Relationship between FT,

generalization and VC dim.
[4] Any weight noise MLP Generalization ability
[19] Any weight noise FNa Error sensitivity measure

a Functional net

sensitivity approach to derive differentoutput sensitivity mea-
suresof a network due to different type of noise. Consider
a Madaline is with sigmoidal output neuron, Piche in [43]
followed an approach from signal to noise ratio (SNR) and
came up with a set of measures for the output sensitivity
of a network with respect to different noises. Using such
SNR, a weight accuracy selection algorithm is developed and
applied to determine the precision requirement in hardware
implementation. Townsend and Tarassenko [54] considered a
radial basis function (RBF) network with multiple outputs and
derived the output sensitivity in matrix form for an RBF that is
suffered from perturbations in input data, radial basis function
centers and output weights.

As output sensitivity is just an indirect view point to
understand the effect of NN due to noise, the actual effect
of noise to the performance of a NN cannot be identified
easily. A more practical view point to the problem is from its
actual performance — the generalization ability. Catala and
Parra proposed a fault tolerance parameter model and studied
the performance degradation of a RBF network if the RBF
centers, widths and the corresponding weights are corrupted
by multiplicative noise [10]. Bernieret al extended from Choi
& Choi statistical sensitivity approach [15] and derived the
error sensitivity measurefor MLP [2], [4], RBF network [6]
Similarly, Fontenla-Romeroet al derived theerror sensitivity
measurefor functional net [19].

Noise can be harmful to a NN. But sometimes, it can be
beneficial. Murray & Edwards [36] investigated and found
that adding multiplicative weight noise (and other kinds of
noise) during training can improve the generalization ability
of a MLP. While noise during training can improve the
generalization ability of a NN, Bishop [7] showed that adding
small additive white noise to a NN during training is equiv-
alent to Tikhnov regularization. Jimet al [24] noticed that
adding multiplicative weight noise not just can improve the
generalization ability, but also can improve the convergence
ability in training a recurrent NN.

B. Algorithms for dealing with multiplicative weight noise

While lot of works have been done to understand the effect
of noise to the network performance, various training methods
aiming to improve the fault tolerant ability of a NN have been
developed. Since the effect of a multiplicative weight noise
is proportional to the magnitude of the associated weight,
one intuitive approach is to control the magnitude of the
weights to small values. Cavalieri & Mirabella in [11] have
proposed a modified backpropagation learning algorithm for

multilayer perceptron. In their algorithm, a weight magnitude
control step has been added in each training epoch. Whenever
the magnitude of a weight has reached a predefined upper
limit, it will not be updated unless the update can bring its
magnitude down. Consider that the noise effect can eventually
be cancelled out at the output node if all the weight values
are equal, Simon in [47] suggested a distributed fault tolerance
learning approach for optimal interpolation net and formulated
the learning as a nonlinear programming problem, in which
training error is minimized subjected to an equality constraint
on weight magnitude. Extended from the work done in [10],
Parra and Catala in [38] demonstrated how a fault tolerant RBF
network can be obtained by using a weight decay regularizer
[33]. From model sensitivity point of view, Bernieret al
developed a method called explicit regularization to attain
a MLP [3], [5] or RBF network [6] that is able to tolerate
multiplicative weight noise.

C. Algorithms for dealing with node fault

To deal with node fault, those learning algorithms developed
can be classified into two approaches : (1) adding heuristics
(random fault or network redundancy) during training and (2)
formulating the training as a nonlinear optimization problem.

Adding heuristic in the training algorithm is essentially to
enforce the internal representation ability of a NN distributed
widely within the hidden nodes or weights. So that, no single
node or single weight is particularly important and then
random removal of a node or a weight will only gracefully
degrade the performance of the network. For this approach,
injecting random node fault alone [45], [9] or together with
random node deletion and addition [14] during training are
two techniques that have demonstrated succeed in attaining
fault tolerance. Adding network redundancy by replicating
multiple hidden layers after a NN has been well trained [18],
[40] is another one. Under the same scenario, limit weight
magnitude either by adding weight decay regularizer [14] or
hard bounding the weight magnitude to a small value during
training [11] are another two techniques that can succeed in
obtaining a fault tolerant NN.

Another approach is to formulate the learning directly as
a constraint optimization problem. Neti et al [37] defined
the problem as a minimax problem, in which the objective
function to be minimized is the maximum of the mean square
errors over all fault models. Deodhare et al took a similar idea
in [16] by defining the objective function to be minimized
as the maximum square error, over all fault models and all
training samples. As the computational cost in solving these
minmax problem could be severe for large number of hidden
units, Simon & El-Sherief in [46] and Phatak & Tcherner in
[42] formulated the learning problem to a simpler unconstraint
optimization problem, in which the objective function consists
of two terms namely the mean square errors of the fault-
free model and the ensemble average of the mean square
errors over all fault models. Although solving unconstraint
optimization problem is a lot more easy compared with a min-
imax problem, these formulations are still suffered from sever
computational burden when their formulations are extended
to handling multiple nodes fault. In view of the lacking of
a theoretical framework and the difficulty in extending the
existing approaches to multiple nodes fault, Leunget al in



TABLE II
RESEARCH WORKS ON THE ALGORITHMS DEVELOPED.

Ref. Fault NN Idea
[37] Single node fault MLP Minimax Problem1
[9], [45] Node fault MLP Injecting random node fault

during training
[35] Weight noise MLP Adding weight noise

during training
[14] Weight noise & MLP Weghit decay2
[18], [40] Node fault MLP Adding redundancy
[16] Single node fault MLP Minimax problem3
[11] Node fault MLP Weight magnitude bounding
[38] Mul. weight noise RBF Apply weight decay algo.
[3], [5] Mul. weight noise MLP Explicit regularization
[47] Weight noise INa Nonlinear program4

[42] Single node fault MLP Nonlinear program5
[30] Mul. nodes fault RBF Fault tolerant regularizer
[50] Mul. weight noise RBF Apply KL divergence

a Interpolation net
1 minθ{maxθ̃ 1/N

∑N

k=1
(yk − f(xk, θ̃|θ))2}

2Apply weight decay algorithm with random node fault injection during
training
3 minθ{maxθ̃ maxk(yk − f(xk, θ̃|θ))2}
4 Minimizing training error subject to equality constraint on weight
magnitude
5 1/N

∑N

k=1
(yk − f(xk, θ))2 + α|Ωθ̃|−1

∑
θ̃∈Ω

θ̃
1/N

∑N

k=1
(yk −

f(xk, θ̃|θ))2

[30] and Sum in [51] have attempted to these problems by
devising an objective function for fault tolerant learning.

III. O BJECTIVE FUNCTION BASED FRAMEWORK

A. Notations

Let M0 be the unknown system to be modeled. The input
and output ofM0 are denoted byx and y respectively. The
only information we know aboutM0 is a set of measurement
data D, where D = {(xk, yk)}N

k=1. Making use of this
data set, an estimated model̂M that is good enough to
capture thegeneral behaviorof the unknown system can be
obtained. For many real-time applications, thisgoodmodelM̂
will furthermore be mapped onto a hardware implementation,
like FPGA or DSP chip. As it is known that a hardware
implementation of a model̂M can never be perfect. We denote
this inaccurate implementation of̂M by M̃. The conceptual
difference amongstM0, M̂ M̃ is shown in Figure 1. Finally,
we letΩ be the set of models in whicĥM andM̃ are defined.

In conventional learning theory, it is assumed that the
implementation of a modelM0 is fault-free. ThereforeM̃ is
equal toM̂. In such case, the learning algorithm for obtaining
the best implemented model is basically the same as the
learning algorithm for obtaining the best estimated model.

In FTL, such assumption is not existed. An implementation
of a modelM0, denoted byM̃, is defined as a random model
probabilistically depended on the modelM. The set of models
in whichM̃ can be defined is denoted bỹΩM. Clearly,Ω̃M ⊂
Ω. The conditional probability is denoted byP (M̃|M̂), which
is depended on the property of the fault model concerned. It
could be very complicated if multiple fault models co-exist.

Fig. 1. Framework of fault tolerant learning.

B. MeasureL(M|D)

To search for the best model̂M, one would need to define
a measure to evaluate the closeness between two models.
In convention learning,generalization abilityand a poste-
rior probability are two common measures being applied to
measure the closeness between a modelM and the unknown
modelM0.

a) Estimation: For a set of dataD and letJ(M|D) be
the measure, the bestestimated modelM̂ will be defined by

M̂ = arg min
M∈ΩM

{J(M|D)} . (1)

b) Implementation:While in FTL, the focus is on the
implemented model. The bestimplemented modelM̂I is
defined as the one minimizing the expectation ofJ(M|D)
over Ω.

L(M|D) =
∫

M̃∈Ω̃M
J(M̃|D)P (M̃|M)dM̃. (2)

M̂I = arg min
M∈ΩM

{L(M|D)} . (3)

The learning algorithm that can search for theMI is called a
fault tolerant learning algorithm.

IV. ESTIMATED MODELS Ω
To clarify the concept ideas about estimated model set, let

us take RBF networks as an example. Consider the estimated
model is an RBF network consisting ofM hidden nodes.
In which only the output weights can be tunable but the
basis centers and widths are fixed, an RBF network can be
formulated as

M∑

i=1

θiφi(x),

where φi(x) for all i = 1, 2, · · · ,M are the radial basis
functions given by

φi(x) = exp
(
− (x− ci)2

σ

)
, (4)

cis are the radial basis function centers and the positive
parameterσ > 0 controls the width of the radial basis
functions.



For k = 1, 2, · · · , N
M0 : yk = f(xk) + ek, (5)

where (xk, yk) is the kth input-output pair that is measured
from an unknown deterministic systemf(x) with random
output noiseek. To model the unknown system, we assume
that f(x) can be realized by an RBF network, i.e.

M : yk =
M∑

i=1

θiφi(xk) + ek (6)

ek ∼ N (0, Se), (7)

for all k = 1, 2, · · · , N . Se is known in advance, a modelM
in Ω can indeed be represented by anM -vector,

θ = (θ1, θ2, · · · , θM )T .

The model setΩ is isomorphic to anM -dimension Euclidean
space,RM .

The best estimated model̂M is thus represented̂θ. Equa-
tion (1) is rewritten as follows :

θ̂ = arg min
θ∈RM

{J(θ|D)} . (8)

HereJ(θ|D) can be defined in one of the following forms.
1) Sum Square Errors (SSE) :

J(θ|D) =
1
N

N∑

k=1

(yk − f(xk, θ))2. (9)

2) SSE with Regularizer (Weight Decay) :

J(θ|D) =
1
N

N∑

k=1

(yk − f(xk, θ))2 + λθT θ, (λ > 0).

(10)
3) Likelihood Probability :

J(θ|D) = −P (D|θ). (11)

4) Log Likelihood :

J(θ|D) = − log P (D|θ). (12)

5) A Posterior Probability :

J(θ|D) = −P (D|θ)P (θ)
P (D)

. (13)

6) Log A Posterior Probability :

J(θ|D) = − log P (D|θ)− log P (θ). (14)

The probability P (θ) which appears in Equation (13) and
Equation (14) is theA Prior distribution ofθ.

The best implemented model̂MI is thus represented̂θI .
Equation (2) can be rewritten as follows :

L(θ|D) =
∫

θ̃∈Ω̃θ

J(θ̃|D)P (θ̃|θ)dθ̃ (15)

θ̂I = arg min
θ∈RM

{L(θ|D)} . (16)

The integration is taken over theRM space. The probability
P (θ̃|θ) is depended on the fault model concerned. Note that
this probability is not the same as theA Prior probabilityP (θ).

If there are only finite number of possible faulty models, the
objective function defined in Equation (15) would be given by

L(θ|D) =
∑

θ̃∈Ω̃θ

J(θ̃|D)P (θ̃|θ)dθ̃. (17)

The set of faulty models is depended on the estimated model
θ.

One should note that the best estimated model (i.e. the fault-
free model) obtained either by Equation (11) or Equation (12)
are the same because

arg min
θ∈RM

{−P (D|θ)} = arg min
θ∈RM

{− log P (D|θ)} .

However, for fault tolerant cases, there will have no such
guarantee that

arg min
θ∈RM

{
−

∫
P (D|θ̃)P (θ̃|θ)dθ̃

}

is the same as

arg min
θ∈RM

{∫ (
− log P (D|θ̃)

)
P (θ̃|θ)dθ̃

}
.

The same reason applies to Equation (13) and Equation (14).
Apart from defining an RBF network as in Equation (7),

one can also define the estimated model in other forms. For
instance,

yk = θ0 +
M∑

i=1

θiφi(xk) + ek, (18)

ek ∼ N (0, Se), (19)

for k = 1, 2, · · · , N . For a givenSe, the estimated model set
will be isomorphic to theRM+1 space.

If we assume that the values ofcis and σ in the M
basis functions are not predefined, an RBF model will be
parameterized by an(2M + 2)-vector,

(θ0, θ1, · · · , θM , c1, c2, · · · , cM , σ)

The estimated model setΩ will thus be isomorphic to the
R2M+2 space.

V. I MPLEMENTED MODELS Ω̃M
Recall that an implemented model ofM is a model, in

which part of its structure is faulty. In this section, three typical
fault models will be introduced including (1) the multiplicative
weight noise (2) single-node fault and (3) multiple-nodes fault.
Similarly, we use RBF network as an example for illustration.

A. Multiplicative weight noise withJ(θ|D) = SSE

Mulplicative weight noise exists whenever a weight is
encoded in a low precision binary form. In order not to divert
the focus of this section, the exaplination of this effect is
presented in Appendix A.

Using the model described in Equation (55), an implemen-
tation of a modelθ (denoted bỹθ) can be defined as follows :

θ̃i = θi + βi θi, (20)

βi ∼ N (0, Sβ), (21)
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Fig. 2. For multiplicative weight noise case, the conditional probability
P (θ̃|θ) for θ equals to(0.1, 1)T .

for all i = 1, 2, · · · , M . In other word,

P (βi) =
1√

2πSβ

exp
(
− β2

i

2Sβ

)
∀ i = 1, · · · ,M. (22)

Let θ = (θ1, θ2, · · · , θM )T andβ = (β1, β2, · · · , βM )T ,

θ̃ = θ + A(θ)β,

A(θ) = diag{θ1, θ2, · · · , θM} .

So,
P (θ̃|θ) ∼ N (θ, SβA2(θ)). (23)

An example of P (θ̃|θ) is shown in Figure 2. Hereθ =
(0.1, 1)T and the weight noise varianceSβ is 0.01.

One should note thatθ, θ̃ ∈ RM , and Ω̃θ = Ω = RM . For
J(θ|D) is sum square errors,

L(θ|D) =
1
N

N∑

k=1

∫

θ̃∈Ω̃

(yk − f(xk, θ̃))2P (θ̃|θ)dθ̃. (24)

Consider the transition probabilityP (θ̃|θ) as defined in Equa-
tion (23), it can be reduced to the following explicit regular-
ization form [3].

L(θ|D) =
1
N

N∑

k=1

(yk − f(xk, θ))2 + SβθT

[
1
N

N∑

k=1

G(xk)

]
θ,

(25)
whereG(xk) is a diagonal matrix defined as follows :

G(xk) = diag
{
φ2

1(xk), φ2
2(xk), · · · , φ2

M (xk)
}

. (26)

For RBF network with predefined basis function centers and
widths, θ̂I is given by

θ̂I = (Hφ + SβQg)
−1

(
1
N

N∑

k=1

ykφ(xk)

)
, (27)

where

Hφ =
1
N

N∑

k=1

φ(xk)φT (xk)

Qg =




g1 0 · · · 0
0 g2 · · · 0
...

...
...

0 0 · · · gM


 =

1
N

N∑

k=1

G(xk).

It is clear that, thosẽθs with high probability are clustered
aroundθ. If we restrict theθ̃ only those withP (θ̃|θ) larger
than a small positive numberδ, the best implemented model
can be re-defined as follows :

Lr(θ|D) =
∫

θ̃∈Ω̃r
θ

J(θ̃|D)P (θ̃|θ)dθ̃ (28)

θ̂I = arg min
θ∈RM

{Lr(θ|D)} , (29)

whereΩ̃r
θ = {θ̃|P (θ̃|θ) ≥ δ}. The computation complexity for

θ̂I can be largely reduced. This is particularly advantageous
when the dimension ofθ is large.

B. Multiplicative weight noise withJ(θ|D) = − log P (D|θ)
For RBF,P (yk|xk, β, θ) is given by

1√
2πSe

exp

(
− (yk −

∑M
i=1 φi(xk)(1 + βi)θi)2

2Se

)
(30)

for all k = 1, 2, · · · , N . Putting the definitions ofP (βi) in
Equation (22) andP (y|x, β, θ) in Equation (30), and integrate
over all possibleβ, we have the distribution

P (yk|xk, θ)

=
∫

P (yk|xk, β, θ)P (β)dβ

=
1√

2πS(xk, θ)
exp

(
− (yk − φT (xk)θ)2

2S(xk, θ)

)
(31)

for all k = 1, 2, · · · , N .

S(x, θ) = Se + SβφT (x)A2(θ)φ(x) (32)

= Se + Sβ

M∑

i=1

φ2
i (x)θ2

i . (33)

The likelihood probability will be given as follows :

P (D|θ) =
N∏

k=1

∫
P (yk|xk, θ̃, θ)P (θ̃|θ)dθ̃ (34)

=
N∏

k=1

∫
P (yk|xk, β, θ)P (β)dβ. (35)

TheL(θ|D) can then be written as follows :

L(θ|D) = −
N∑

k=1

log
∫

P (yk|xk, β, θ)P (β)dβ (36)

=
1
2

log 2π +
1

2N

N∑

k=1

log S(xk, θ)

+
1

2N

N∑

k=1

(yk − φT (xk)θ)2

S(xk, θ)
. (37)

Hence,θ̂I can be obtained by

arg min
θ

{
1

2N

N∑

k=1

log S(xk, θ) +
1

2N

N∑

k=1

(yk − φT (xk)θ)2

S(xk, θ)

}
.

(38)



Faulty Node

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�Normal Node

Fig. 3. Single-node fault NN models. For a network ofM hidden nodes,
there areM possible single-node fault models.

By using the idea of gradient descent, a training algorithm
can thus be derived. Taking the gradients of the 2nd and the
3rd terms in Equation (37), it is readily obtained

∂

∂θ
log S(xk, θ) =

2Sβ

S(xk, θ)
G(xk)θ, (39)

∂

∂θ

(yk − φT (xk)θ)2

S(xk, θ)
= −2Sβ(yk − φT (xk)θ)2

S2(xk, θ)
G(xk)θ

−2(yk − φT (xk)θ)
S(xk, θ)

φ(xk), (40)

whereG(xk) is a diagonal matrix defined as in Equation (26).
A fault tolerant RBF network can thus be obtained by the

following gradient descent algorithm :

θ(t + 1) = θ(t)− µ
∂

∂θ
L(θ(t)|D), (41)

whereµ is a small positive value corresponding to the step
size and

∂L(θ|D)

∂θ
=

Sβ

N

N∑
k=1

(
1

S(xk, θ)
− (yk − φT (xk)θ)2

S2(xk, θ)

)
G(xk)θ

− 1

N

N∑
k=1

(yk − φT (xk)θ)

S(xk, θ)
φ(xk). (42)

The initial conditionθ(0) is set to be a small random vector
close to null.

C. Single node fault withJ(θ|D) = SSE

Once a node has been faulty, we assume that its output will
be stuck at zero. Therefore, an RBF network with itsith node
being faulty will be denoted by anM -vector θ−i, which is
identical toθ except that theith element is zero.

θ−i = (θ1, θ2, · · · , θi−1, 0, θi+1, · · · , θM )T

Assume thatthere is at most one node will be removed
randomly. The probability that a network will be faulty isq.
Once a network is faulty, there is uniformly random for any
one of the node is fault, Figure 3. Under such circumstance,

Ω = RM , (43)

Ω̃θ = {θ, θ−1, θ−2, · · · , θ−M}. (44)

A node will be fault is aboutq/M probability.

P (θ̃|θ) =





1− q if θ̃ = θ

q/M if θ̃ = θ−1

...
...

q/M if θ̃ = θ−M .

(45)

For J(θ|D) is defined as the sum square errors,

L(θ|D) = (1− q)J(θ|D) +
q

M

M∑

i=1

J(θ−i|D). (46)

In which,

J(θ−i|D) = J(θ|D) + θ2
i gi

+ 2θi
1
N

N∑

k=1

(yk − φT (xk)θ)φi(xk) (47)

where gi is the ith diagonal element ofQg. Hence, the
objective function for attaining a RBF network to tolerate
single node fault can be written as follows :

L(θ|D) = J(θ|D) +
2q

M

1
N

N∑

k=1

ykφT (xk)θ

+
q

M
θT [Qg − 2Hφ]θ. (48)

Taking the derivative ofL(θ|D) and setting it to zero,̂θI can
be obtained as follows :

θ̂I =
(

Hφ +
q/M

1− q/M
Qg

)−1 1
N

N∑

k=1

ykφ(xk). (49)

The matrix q/M
1−q/M Qg which appears in the last equation plays

a role similar to a regularizer.

D. Multiple nodes fault withJ(θ|D) = SSE

We assume that a node fault is equivalent to permanently set
the output of the node zero. Therefore, a faulty RBFf̂(x, θ̃),
whereθ̃ = (θ̃1, θ̃2, · · · , θ̃M )T and

θ̃i = βiθi, (50)

could be defined by multiplying eachφi(x) by a random
binary variableβi :

f(x, θ, β) =
M∑

i=1

βiθiφi(x). (51)

When βi = 1, the ith node is normal. Whenβi = 0, the ith

node is fault. We assume that all nodes are of equal fault rate
p, i.e.

P (βi) =
{

p if βi = 0
1− p if βi = 1.

(52)

for i = 1, 2, · · · ,M andβ1, · · · , βM are independent random
variables.



Normal Node

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
	
	





�
�

�
�



�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
� Faulty Node

Fig. 4. Multiple-nodes fault NN models. For a network ofn hidden nodes,
there are2n − 1 possible multiple-nodes fault models.

The objective function for attaining an optimal fault tolerant
RBF against multiple nodes fault with fault ratep is given by

L(θ|D) =
1
N

N∑

k=1

y2
k − 2(1− p)

1
N

N∑

k=1

ykφT (xk)θ

+(1− p)θT {(1− p)Hφ + pQg} θ.

The implicit regularizer is given bypθT (Qg −Hφ)θ.
Taking derivative theL(θ|D) with respect toθ and setting

it to zero, θ̂I can be obtained as follows :

θ̂ = (Hφ + p (Qg −Hφ))−1 1
N

N∑

k=1

ykφ(xk). (53)

Observe that̂θ above is also the solution of

L(θ|D) =
1
N

N∑

k=1

(
yk − φT (xk)θ

)2
+ θT Σθ, (54)

where Σ = p(Qg − Hφ), minimizing L(θ|D) is equiv-
alent to minimizing the mean square training errors
N−1

∑N
k=1

(
yk − φT (xk)θ

)2
plus an additional regularizer

term θT Σθ.

VI. CONCLUSION

In this paper, a survey on fault tolerant NN researches has
been elucidated. Then, an objective function based framework
is proposed. Using RBF as an example, four objective func-
tions for dealing with three different types of fault models have
been derived. In sequel, four fault tolerant learning algorithms
have been developed. By comparing the equations for the best
implemented models,̂θI , in dealing with multiplicative weight
noise and single node fault, it is able to explain why training

an RBF by adding weight decay can also improve the fault
tolerance.

Finally, it should be noted that investigation the fault
tolerance of NNs has still been a valuable problem in the
NN community [12], [13], [17], [52], [53]. The framework
developed in this paper is just in its preliminary stage. Further
work should have to do in order to make it complete and
connect to the conventional NN learning theory.
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APPENDIX

A. Source of Multiplicative Weight Noise

Multiplicative weight noise usually appears when a neural
network is implemented by a FPGA. Owing to increase com-
putational efficiency and reduce circuit complexity, floating
point arithmetic is avoided. Each number in FPGA is encoded
by a low precision (finite bits) binary number [23], [32],
[55], in a form as follows±rrr.pppppppppppp. The first
bit is the sign bit. Then, a decimal number3.125 will be
encoded to1011001000000000. For an 8-bits format of the
form ±rr.ppppp, 3.125 will be encoded to11100100.

The beauty of this encoding scheme is that the arithmetic
operations, such as+ and×, can be accomplished by integer
arithmetic. The drawback is that quantization error will exist.
For example,3.124 and 3.126 cannot be encoded perfectly.
Using the 8-bits format,3.124 and 3.126 will be encoded to
11100100, if the number is rounded to its nearest 8-bits binary
number. Therefore, an error will exist between a decimalz and
its encoded counterpart̃z.

To study the behavior of this error, we consider the 8-bits
format and letb = (z − z̃)/z. Then10000 zs are uniformly
random sampled in the range[−4, 4]. The histogram of the
correspondingbs is plotted in Figure 5. Clearly, the distribution
can be treated as a Gaussian distribution with mean zero.
Hence,z̃ can be modeled as an random variable given by

z̃ = z + bz, (55)

whereb ∼ N (0, Sb). In accordance with the simulation, the
value ofSb is 0.0054.
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Fig. 5. Finite precision error.


