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Where the available evidence comes from different
sources methods are required that can synthesis all
of the evidence. To further improve on outcome for
patients with endometrial cancer, physicians need to
identify risk factors for poor survival and develop
applicable treatment strategies. Making the
prognostic index allows a precise analysis by
stratifying the patients, and an individual treatment
according to prognosis. During last three decades,
many randomized and non-randomized studies have



evaluated the prognostic factors affecting the
treatment outcome of endometrial cancer. However,
results of these studies were not entirely
consistent ;5 the impact of prognostic factors on
endometrial cancer is still unclear.

Therefore, this project conducted a meta-analysis and
synthesising evidence from studies with different
designs. The methodological quality of the studies
was assessed using the modified Jadad scale for
randomized controlled trials (RCTs) and the
Newcastle - Ottawa scale for non-RCTs. Based on the
result of the prognostic index model, the equation
PI=2. 3xaget+84 (if grade 2) or 135 (if grade 3)+69 (if
stage Ib or Ic) or 127 (if stage 11)+43 (if no
lymphadenectomy)?57 (for adjuvant chemotherapy of 3
times or more)+24 (calibrating constant). Our PI
model was predictive in this project and may be
effective in clinical practice. Further prospective
studies should be conducted to confirm the predictive
ability of the new PI model for early-stage
endometrial cancer.

In future work, the relationship between obesity and
endometrial cancer has been extensively investigated,
yet 1ts impact on mortality and life expectancy of a
general Taiwanese female population has not been well
studied. Recommendations for future research could
be: to consider BMI in the relationship between
endometrial cancer and mortality rate as well as life
years lost associated with endometrial cancer.

Meta Analysis, Recurrent Endometrial Cancer,
Prognosis Factors index Model
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1 BACKGROUND AND RATIONALE

Informed healthcare decision making depends on the available evidence base. Where the available evidence
comes from different sources methods are required that can synthesis all of the evidence. The different types
of study designs (e.g., randomized, non-randomized/observational) used to assess the effects of interventions
can be arranged into a hierarchy, at the top of which is the randomized controlled trial (RCT) (Centre for
Reviews and Dissemination, 2009). Randomization increases the likelihood that the treatment groups will be
balanced in terms of known and unknown prognostic or confounding variables. Consequently the treatment
effects estimated from RCTs are less subject to the potential confounding effects of extraneous variables
(Gordis, 2004). Evidence from RCTs alone, however, may not be sufficient to inform decision makers. In
particular, the strict inclusion and exclusion criteria which are often applied in RCTs may limit their
generalizability relative to non-randomized studies (Ades et al., 2006; Prevost et al., 2000). Furthermore, the
scarcity of randomized studies for certain non-drug technologies, such as medical devices and surgical
procedures, may necessitate the use of evidence from non-randomized studies in addition to that available
from randomized studies (Ades et al., 2006). Contrary to ignoring evidence from non-randomized studies, it
has been argued that all available evidence should be used to inform healthcare decision making (Sculpher et
al., 2007; Sutton et al., 2009). Such an approach requires methods capable of synthesising evidence from both
randomized and nonrandomized studies.

During past fourth decade, Meta-analysis has been used to synthesize results from a wide variety of studies,
both non-experimental (e.g., gender differences) and experimental (e.g., intervention effectiveness).
Meta-analytic results allow for more powerful estimates of treatment effects than those estimates provided by
individual studies considered in isolation (Borenstein et al., 2009). Clinical and medical decision making is
based increasingly on evidence-based practices and the totality of the relevant accumulated evidence that
meta-analyses provide (Sutton and Higgins, 2008). Meta-analytic results help inform practitioners of
evidence-based medicine, policymakers, and regulatory bodies, about the overall efficacy of different
treatment interventions. In addition, the citation impact of meta-analytic studies is profound; meta analysis are
the most frequently cited type of research design in the medical literature (Patsopoulos et al., 2005). In fact, in
recognition of the growing importance of meta analysis, the United States government’s American Recovery
and Reinvestment Act of 2009 appropriated funds for comparative effectiveness research (CER), which
synthesizes research that compares treatment outcomes and efficacies. The same CER likewise considers the
evidence for prevention, treatment, and diagnosis of diseases and other health conditions (H.R.1, S.1, 111th
U.S. Congress, first session, 2009). A widely accepted goal of research is to produce cumulative knowledge
that is generalizable, and meta analysis provide a means of addressing this goal through quantitative
integration of the cumulative research on a topic. In a meta-analysis, data are converted with statistical
techniques into a standardized measure of effect sizes such as standardized mean differences, odds ratios, or
correlation coefficients. Converting study results into a common standard metric allows a research synthetist
to make comparisons of effect sizes easily across studies (Lipsey and Wilson, 2001). A noteworthy advantage
of meta-analysis is that it yields a summary effect size estimate that has considerably more power to detect
effects than that of any of the individual studies. This power permits meta-analysts to uncover more
meaningful effects when study results concur and to discover study-level characteristics that can help explain
differences in effects among studies (Lipsey and Wilson, 2001).

In a cost-containment environment, economic evaluation plays an important role in healthcare technology
assessment. The International Network of Agencies for Healthcare Technology Assessment (HTA) defines as
“a multidisciplinary field of health policy analysis studying the medical, social, ethical, and economic
implications of development, diffusion, and use of health technology”, e.g., healthcare technologies include
pharmaceuticals, devices, and surgical procedures (International Network of Agencies for Health Technology
Assessment, 2013). Indeed, the economic evaluation of healthcare technologies involves the comparison of
alternative interventions in terms of their relative costs and effects (Drummond et al., 2005). By comparing
costs and effects, economic evaluations inform decision making regarding the efficient allocation of scarce
resources. Cost-effectiveness research is used as formal inputs into decisions about which interventions and
programmes should be funded from collective resources by health systems around the world (Drummond et
al., 2005). The increasing use of economic evaluations to inform healthcare decision making raises important
methodological issues for this area of research. One of these issues is the need to synthesis evidence on effects
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from all sources of available evidence (Ades et al., 2006). Depending on the technologies being compared, the
body of available evidence could include a variety of different sources (e.g., randomized controlled trials
(RCTs), non-randomized/observational studies).

Bayesian statistical methods represent a valuable set of analytical tools for combining evidence from different
sources (Briggs, 2001). While the application of Bayesian methods to the economic evaluation of healthcare
technology 1is relatively new, the potential for these methods to take into account all available evidence to
inform decision making is profound. A key challenge, however, is to characterize the major gaps in existing
methods and to set priorities for methods research. Bayesian models combine study information, which this
proposal will call current evidence, with previous information to produce new knowledge. In Bayesian terms,
information from previous study is called a prior, current evidence is called a likelihood, and new knowledge
is called a posterior. A posterior is produced by updating priors with current evidence, typically through
random-effects meta-analysis, which accounts for variability in observed treatment effects by modeling both
within and between-study variance. Bayesian random-effects models are typically used to compute the
posterior distribution of the treatment effect but can be easily extended to predict the treatment effect in the
future.

Depending on the types of evidence being combined, a researcher may face various methodological
challenges. The specific issues addressed in this proposal are: 1) how to combine evidence from randomised
and non-randomized studies, and 2) how to combine patient level data from a trial based economic evaluation
with additional evidence from the literature. Therefore, this proposal will conduct a meta-analysis to
summarize those studies and to develop a novel prognostic index model. Based on the result of the prognostic
index model, this project also investigated when to take the critical intervention treatment, given the costs of
healthcare technology assessment, is of fundamental importance. Further, Bayesian cost-effectiveness analysis
is developed for a survival model based on proportional intensity Nonhomogeneous Poisson process, where
individuals may expected to experience repeated events and concomitant variables are observed. The
methodology is illustrated using the recurrent endometrial cancer data which medical records and pathology
has reviewed for all patients accessible by our University Hospital Tumor Registry.

2. STATEMENT OF THE PROBLEM

Endometrial cancer is the most common malignancy arising in the female genital tract throughout the world.
It most commonly affects postmenopausal women. According to International Agency for Research on
Cancer in 2005, it was diagnosed in 199,000 women worldwide and 50,000 women died of the cancer.
Compared to Western and US, Endometrial cancer in Taiwan is the second common neoplasm following
cervical cancer in the female genital tract. According to the data of Taiwan Cancer Registry, the annual
incidence rate of endometrial cancer is greater in 2008 (8.34 per 100,000 per year) as compared to 1980 (0.6
per 100,000 per year). It is estimated that there will more than 2,400 new cases in 2013.

The cure rate of endometrial cancer is quite high if detected early, but approximately 25% of International
Federation of Gynecology and Obstetrics (FIGO) stage II to stage IV disease will recur with modern
multimodality treatment (American Cancer Society, 2013). For early-stage disease, surgery alone or in
combination with local therapy is generally curative. Once the primary treatment has failed, the opportunity of
secondary cure is slim. Probably several factors exist which indeed affect the ultimate prognosis of early stage
endometrial cancer other than clinical staging. In other words, early detection of recurrence may impact
survival. Moreover, detection of asymptomatic recurrences is associated with prolonged overall survival and
survival from the time of initial detection of recurrence (Chang and Cheng, 2007). Therefore, this proposal
attempts to improve surveillance after treatment might lead to earlier detection of relapse, and precise
assessment of recurrent status could improve outcome.

The natural history of endometrial cancer has developed through evaluation of the patterns of spread. Stage I:
endometrial cancer is cancer confined to the corpus uteri; Stage II: endometrial cancer involves the corpus and
the cervix, but has not extended outside the uterus; Stage III: endometrial cancer extends outside of the uterus
but is confined to the true pelvis; Stage IV: endometrial cancer involves the bladder or bowel mucosa or has
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metastasized to distant sites. All patients are usually classified further according to the extent or stage of
disease so that therapies may be tailored to the particular disease stage. The treatment of endometrial cancer
requires a complex therapeutic approach, consisting of surgery, radiotherapy, chemotherapy and/or hormonal
therapy. Fortunately, most women are diagnosed at an early stage and are treated by hysterectomy and
surgical staging alone. Patients with advanced-stage endometrial cancer represent 10-15% of all newly
diagnosed cases but account for over half of all uterine cancer related deaths, with a survival rate as 5-20%.
Specifically, for patients with stage III or stage IV and for those with recurrent endometrial cancer, the
prognosis remains poor and the optimal adjuvant therapy is yet to be established. A subset of these patients
may benefit from hormonal manipulation, systemic chemotherapies, or combination treatment with
volume-directed radiotherapy and systemic chemotherapy. The choice of therapy depends on the extent of
residual disease after initial surgery, site and nature of the recurrence, prior therapy used, and intent of
treatment, be it curative or palliative.

Figure 1 New Case and Incidence Rates of Endometrial cancer, 2006-2008
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The main etiologic hypothesis for the development of endometrial cancer is exposure to high levels of
estrogen in conjunction with inadequate progesterone. Other risk factors include obesity and nulliparity. In
addition, some life-style factors may also the risk of endometrial cancer. According to the literatures, the
prognostic factors affecting the treatment outcome of endometrial cancer include tumor stage, patient age,
histologic type, grade, depth of invasion into the myometrium, lymph node status, lymphvascular space
involvement, hormone receptors and DNA ploidy. Patients with these adverse prognostic factors should
receive more aggressive treatments. Although there has been considerable progress in the treatment of
malignancy over past decade, the survival rate of advanced and recurrent endometrial cancer remains poor.

To further improve on outcome for patients with endometrial cancer, physicians need to identify risk factors
for poor survival and develop applicable treatment strategies. Thus, it is important to accurately predict the
prognosis in endometrial cancer. Making the prognostic index allows a precise analysis by stratifying the
patients, and an individual treatment according to prognosis. During last three decades, many epidemiological
studies have evaluated the prognostic factors affecting the treatment outcome of endometrial cancer. However,
results of these studies were not entirely consistent; the impact of prognostic factors on endometrial cancer is
still unclear. Therefore, this proposal conducted a meta-analysis to summarize those studies and to develop a
novel prognostic index model. Based on the result of the prognostic index model, we also investigated when
to take the critical intervention treatment, given the costs of healthcare technology assessment, is of
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fundamental importance.

3. AN OVERVIEW OF EVIDENCE SYNTHESIS

Beyond the importance of basing healthcare decision making on all available evidence, there may be other
practical reasons to combine randomized and non-randomized types of comparative evidence. For certain
healthcare technologies, especially non-drug technologies, there may be a lack of randomized studies (Ades et
al., 2006). RCTs are designed to provide estimates of efficacy in an ideal setting, while non-randomized or
observational studies may better reflect estimates of the effectiveness of the treatments in the real world. In
exchange for the greater generalisability associated with non-randomized studies, there is also an increased
likelihood of imbalances among patient characteristics due to the non-randomized nature of the studies
(Grines et al., 2008). These imbalances, if not accounted for in some way, could bias the results. The extent to
which bias in the results is affected by factors such as the impact of the imbalances, the relative number of
randomized and non-randomized studies and the study arm sizes must also be understood.

In a meta-analysis, also known as a quantitative research synthesis, quantitative methods are used to combine
statistically the results of an ensemble of similar research studies into a weighted mean and explore the
consistency of the findings. Current meta-analytic methods allow a researcher to: 1) estimate the magnitude of
the effect size with increased power beyond that of an individual study, ii) estimate and evaluate the
consistency of study outcomes across a series of studies, iii) identify study-level characteristics that are
associated with differences in study outcomes, iv) delineate which treatment groups or subgroups benefit
particularly from an intervention, v) estimate a prediction intervals for an effect in a new study, vi) quantify
and construct a 95% confidence interval (CI) for the heterogeneity.

Fixed Effect (FE) Models
Historically, many systematic reviewers have preferred the FE model because FE models offer simpler
computational formulas and are easier to conceptualize (National Research Council, 1992). With an FE model
the a priori statistical assumption is that there is a single, underlying, true effect size u, which is shared by all
k separate studies. The assumption of the FE model is that the effect size is fixed and homogeneous across
studies: 8;=...=0x= u, where 0; is the population effect of the ith study with an ensemble of k£ independent
studies. FE models assume that the variance observed across studies can be attributed solely to sampling
variability and that 7, the standard deviation of the between-study variation in true effect sizes, is equal to zero.
In the FE model the observed effect size Y, for study i is represented by the population mean p, plus the
within-study sampling error: Y;= u+ &; (Borenstein et al. 2009). The overall summary meta-analytic effect
size is calculated by averaging effect sizes according to the weight assigned to each study. In the FE
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meta-analysis the weight assigned to each individual study is the inverse of the sampling variance: w, =—-,
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where s’ is the within-study error variance for the ith study, which is inversely proportional to the

within-study sample size (Shadish and Haddock, 2009). The overall FE treatment effect (i, is estimated as a
weighted average:
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where the ith study reports an observed effect size of Y; with a corresponding assigned weight of w, (Shadish
& Haddock, 2009), the numerator in the middle term equals the sum of the products of each effect size
multiplied by its weight, and the denominator is the sum of the all the individual weights (Borenstein et al.,
2009).The variance v, of the weighted mean effect size is estimated as the reciprocal of the sum of the

individual study weights, v, =

, and the square root of v, is the estimated standard error of the mean
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k
effect size, SE, = Z w;, (Borenstein et al., 2009). It is important to note that the FE formula for the weights
i=1
assigned to each study and the standard error of estimate of the average effect size does not include a term for
the variance observed between studies, because this term is assumed to be zero.

Therefore, synthesizing the results of studies that vary in design, populations sampled, and treatment protocols
will inevitably result in a compilation of effect sizes that has an inherent element of diversity (Higgins and
Thompson, 2002), and it can be argued that there is always going to be some variation across studies
(National Research Council, 1992), making FE estimates invalid. Higgins et al. (2009) note that the FE
assumption of homogeneity of effect sizes is often untenable for studies in biomedicine because these studies
are likely to differ from each other on numerous dimensions such as populations, settings, treatments,
outcomes and they recommend avoiding the use of FE models. Many researchers have recognized the
limitations with FE meta-analytic methods and have advocated the use of other methodological options such
as random effect models (Schmidt et al., 2009; Kisamore and Brannick, 2008).

Random Effect (RE) Models

Formal exploration of the between-study variation with random effects modeling has increasingly been
recognized as a necessary and worthwhile meta-analytic endeavor, because explanation of the variation will
often result in a better and more thorough understanding of the treatment effect under investigation. Random
effects model explicitly account for the heterogeneity with a parameter that represents the between-study
variation. Sutton and Abrams (2001) express the assumptions of the RE meta-analytic models as Y; ~ N(6, 62),
where Y; is assumed to come from a normal distribution with a known sampling variance, and 8; ~ N (u,72),
where the true underlying effect sizes, 8;, are assumed to come from a normal distribution of effect sizes with
mean u and variance 72, which represents the between-study variation of each 6; around u. However, in
practice, this normal distribution assumption for the underlying effects in individual studies is a strong
assumption, which is often made without supporting evidence in favor of the assumption (Higgins, et al.,
2009). The simple (no covariates) RE model is expressed as

Y= ut+ 6t & 2)

where u is the overall mean, §;, is the deviation of study i’s true effect from the grand mean, and &; is the error
deviation of study i’s observed effect size from the true effect size (Borenstein et al., 2009).

The different assumptions of the FE and RE models (i.e., FE assumes 7 = 0 and RE allows 7 > 0) result in
differing formulas for the standard error of the mean effect size, an important statistic that is used both in
confidence interval computation and for significance testing of the mean (Schmidt et al., 2009). Raudenbush
(2009) recognizes RE models as advantageous because these modeling procedures help 1) quantify
heterogeneity in true effect sizes, ii) include the between-study variation in confidence interval estimates, ii)
extend easily to investigate the ability of study-level variables (covariate) to account for variation, iv) derive
improved estimates of effect sizes in individual studies, and v) conceptualize the random effect in a manner
that is consistent with the scientific goal of generalization. In order to compute the overall RE weighted mean

effect, the weighting scheme w; , that is assigned to each study is inversely proportional to its within study and
between-study variance (Borenstein et al., 2009).
. 1
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These weights are then used to compute the overall summary mean effect u, where
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Here u is equal to the sum of the products of the RE weights multiplied by each effect size divided by the sum
of the weights (Borenstein, et al., 2009). The summary effect u, has a variance V; , that is estimated as
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and the standard error of u, SE ,, is estimated as SE, = 1/V; (Borenstein et al., 2009). A RE 95% confidence
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interval about u is expressed as u +1.96( SE,, ) based on the normal distribution.

Mixed Effect Model

Raudenbush and Bryk (2002) represent the RE meta-analytic model as a two-level hierarchical linear model,
because meta-analytic data has an inherent hierarchical structure where the subjects are nested within studies.
Raudenbush and Bryk (2002) describe the model as a two-stage sampling design where the sampling
mechanism results in two components of variance (e.g., random effect variance at the study level and
estimation variance at the subject level). The random effect variance is the variance that arises as a result of
sampling a random sample from a larger universe of studies that vary in their true effect sizes. The estimation
variance occurs because each study’s effect size estimate is based on a limited number of subjects
(Raudenbush, 2009).

Level-1 model

Raudenbush(2009) expresses the Level-1 (Within Studies) model as Y= 6;+ ei, where Y is the observed effect
size estimate for study i, 6; represents the true effect size for each of the i=1,..., kstudies, and e; is the
sampling error. The sampling errors e; are assumed to be statistically independent from each other, and they

come from a normal distribution with a mean of zero and a known variance o7, where 6/ reflects the

within-study sampling variance and the sample size of study: e; ~ (0,5;).

Level-2 model

The Level-2 model includes study-level covariates (also termed effect modifiers, explanatory variables, and
treatment interactions) that can be added to the meta-analytic model to help explain some of the heterogeneity,
so that the estimate of 72 represents the remaining variation in 6; that is not explained by the study covariates.
In the Level-2 model, the true unknown effect size depends on both fixed study characteristics and the level-2
random effect (Raudenbush and Bryk, 2002). The Level-2 (Between-Studies) prediction model is expressed
by Raudenbush (2009) as more general than other models: 8= Bot+ S1xii+ BaxiatSpXxipt 8i, where S
represents the model intercept; xiy,..., Xip represents the coding of the study-level characteristics; f,...0p are
the regression coefficients, which can be used to predict differences in the individual study effect sizes 6;; and
8iis the random effect of the ith study. The random effect, §; ~ (0,0} ) is usually assumed to come from a

normal distribution with mean zero and variance 72 (Raudenbush, 2009).

These two models can be combined into a mixed-effects linear model (also referred to as a hierarchical linear
model or a generalized linear mixed model): Y= ot Bixu+ Laxix+tBpxipt dit+ e, with the assumption
that 5, +e, ~ N(0,v}), where v; =7° + o represents the total variance of the observed effect size

(Raudenbush, 2009). Two types of point estimation methods that are commonly used to estimate 72 in
random/mixed-effect meta-analytic models include DerSimonian and Laird (1986) and Restricted Maximum
Likelihood Estimation (REML).

In a random/mixed-effects approach the random-effect variance is treated as if it were known even though it is
7



estimated, and thus when 7 is estimated from the data, the uncertainty of the estimate is not considered. The
overall mean meta-analytic effect size estimate and regression coefficients are weighted estimates that are
dependent upon the uncertainty in the variance of the random effects (Raudenbush, 2009). Not considering the
underlying uncertainty in the estimate of the RE variance may result in threats to the validity of statistical
inference from the meta-analysis (Raudenbush, 2009). Meta-analytic estimates are often based on a limited
number of data points and this further compromises the validity of the between-study variance estimate and
the confidence intervals about . When the number of included studies k is small, when the sample size within
studies n is small, or when the sampling variance v;, is large, methods that estimate 7 as a fixed value
underestimate the standard errors and the corresponding confidence limits, which may result in inaccurate
overall estimates of y (DuMouchel, 1994; Raudenbush, 2009). Furthermore, in practice it is often not
plausible to assume that the random effects are normally distributed with constant variance (Hardy and
Thompson, 1998).

Bayesian Hierarchical Linear Model

Bayesian methods offer the advantage of encouraging the use of a unified and model-based approach to
evidence synthesis (Sutton and Higgins, 2008; DuMouchel and Normand, 2000). The Bayesian statistical
philosophy is essentially about updating probabilities in light of new evidence and thus it translates well into
the practice of quantitative research synthesis and updating of meta-analyses. The Bayesian approach
distinguishes itself from traditional meta-analytic methods because Bayesian analyses emphasize estimation
and prediction of parameters and uncertainty assessments (National Research Council, 1992). When the
uncertainty of T is not considered in a meta-analytic model, as is the case in the random/mixed-eftfects models,
it is possible that a treatment effect may be incorrectly identified as significant (DuMouchel and Normand,
2000). Comparative studies have shown that the problem with the RE approach is that, because the
uncertainty in the RE variance estimate is not considered, T may not be estimated accurately when there are a
small number of studies (Spiegelhalter et al. 2004).

The essential concept in the Bayesian approach to research synthesis is the notion of exchangeability of study
effects (Higgins, et al. 2009). Within a Bayesian framework, study effects are considered to be similar to each
other but not identical (Spiegelhalter et al., 2004; Higgins et al., 2009). Although the Bayesian model is
similar to an RE model, it differs conceptually from the RE model in the exchangeability assumption and the
justification for the process that generates the random effects (Raudenbush, 2009). According to the Bayesian
perspective, the random variation of the true effect sizes reflects the investigator’s lack of knowledge
(uncertainty) about the process that generates the random effects, while a traditional RE model specifies the
sampling mechanism of the sampling studies from a larger population of studies as the source of random
effects variance (Raudenbush, 2009). In Bayesian statistics every unknown model parameter has its own
probability distribution. This allows for direct probability statements (i.e., computation of the probability that
an effect is greater than zero) and uncertainty estimates to be made about the data. Bayesian models may
incorporate other relevant information about parameters that is external to the actual meta-analytic data but
available to the researcher (Schmidt, 2001). The researcher’s probability beliefs about the external evidence
can be modeled with a ‘prior’ quantitative summary of the variance that reflects the researcher’s uncertainty
about the mean of the true effect size. This prior evidence is then formally combined with the observed
meta-analytic data (known as the likelihood) via the application of Bayes’ theorem and merged into the
current state of knowledge (Sutton et al., 2000) regarding the meta-analytic outcome or intervention. Bayesian
methods address the question of how beliefs about an outcome change in light of the evidence generated by
the new study or meta-analysis (Sutton et al., 2000), which makes Bayesian methods particularly suitable for
updating meta-analytic data.

With a Bayesian approach, the research synthetist can effectively consider and include small studies and
extreme results (Smith et al., 1995), while at the same time allowing for moderate violation of the statistical
assumption that effect size estimates have normal distributions with known variances (DuMouchel,1994),
which can be a restrictive assumption with some types of data. Bayesian models provide more accurate
estimates of study-specific parameters, 6;, by incorporating the information from all of the studies in a
meta-analysis (i.e., by borrowing strength from the other studies) in order to provide a better estimate of each
individual study’s effect size. The parameters that require estimation are: y, 7, 8;, and f (DuMouchel, 1994).
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DuMouchel (1994) uses the following equations for a Bayesian meta-analysis:
Yi= ut 6t & (6)

where the observed effect size estimate derived from the ith study is denoted by Y. The effect size estimates
from each study are assumed to be normally distributed with a known variance o, which is conditional on the

true parameter value yi| 8; ~ N(8; s7). The study-specific parameters, which are the expectation of Y; are

represented by 8;, where 6; =y + §;. The random effect , is assumed to be normally distributed with a mean of
0 and variance t2. The sampling error associated with Y; is represented by &;. It is assumed to be normally

distributed with a mean 0 and a known sampling variance: & ~ (0,s;). Both random effects &;, and the

within-study sampling errors &;, are assumed to be independent of each other and independent across studies.
Equation 6 can be easily be generalized and expanded to include study-level covariates (moderator variables)
which represent fixed characteristics of the studies and are used to explain variation between studies:

Yi=(Xi f+ 6t & @)
0:=X; B+ 6i (8)
DuMouchel (1994) uses the term X;f to replace u; where X[ represents a linear combination:

Xif=Po+ Pixat ...... +B)xy 9)

There are three sources of variation to be estimated in a hierarchical Bayesian meta-analysis: 1) s;, the
within-study random sampling error which is usually assumed to be known, ii) 3, the between-study
differences that can be explained by fixed study-level characteristics at the second level of the hierarchical
model, and iii) 7, the standard deviation of the unexplained random variation due to differences between
studies (DuMouchel, 1994; DuMouchel and Normand, 2000). In Bayesian hierarchical models it is 7, the
standard deviation of the random effects variance, that plays a crucial role in assessing the uncertainty about p
and in predicting future s (DuMouchel, 1994; Spiegelhalter et al., 2004). In a Bayesian model prior
distributions are assigned for W, 7, and . The Bayesian hierarchical linear model can be expressed in notation
as (Sutton and Abrams, 2001):

Yi~N (8i,57) i=1,..., (10)

0~ (U’ (11)

It is through the specification of a prior distribution for 7 that the Bayesian framework provides a technique
for investigating the similarity of studies and the extent to which studies can borrow information from the
entire ensemble of studies (Greenhouse and Iyengar, 2009). The choice of the prior distributions affects both
the width of the credible interval estimates for u and the amount of shrinkage imposed on the ;. (Pauler and
Wakefield, 2000) as well as the size and width of the credible intervals for Orew. However, there is no single,
generally accepted, correct prior distribution that is used as a default or reference prior in Bayesian
meta-analysis (Spiegelhalter et al., 2004). For this reason a Bayesian analysis often includes specification
from a community of prior distributions. Prior distributions can be specified in such a way that so that FE and
RE models become special cases of the Bayesian Hierarchical Linear Model (DuMouchel and Normand,
2000). For example, the meta-analytic model can reduce to the equivalent of an FE model when the prior for T
is set near the value of t=0, so that there is assumed to be one underlying common effect. Alternatively, when
the number of studies in the meta-analysis is very large or when the prior for 7 is concentrated around the
estimate of 7, then the meta-analytic model becomes equivalent to a RE model.

Posterior probability distributions are estimated via the application of Bayes’ Theorem for the parameters (i.e.,
72, u and B) given the data from studies Y;...Yx. The posterior probability distribution represents the

conditional distribution of the unknown quantity of interest, given the data. The posterior distribution is
9



obtained by multiplying the prior probability density function by the likelihood function that represents
information about the unknown quantity provided by the current data. The posterior density function is used
in a Bayesian analysis for all inferences made regarding the unknown quantities of interest (Sutton et al.,
2000). It is important to note that Bayesian meta-analytic results are especially dependent upon the posterior
distribution of the random effect (DuMouchel, 1994). Posterior distributions for the model parameters are best
understood and displayed with trace plots that graph the posterior expectation of y and 8;, given the posterior
distribution of T (DuMouchel, 1994). The posterior distribution of 7 is often skewed and because of the
skewness, the median of the distribution is commonly used for point estimation instead of the mean (Higgins
et al., 2009). Computation of the posterior probability distributions requires integral calculus (i.e., calculation
of the area under the curve of f(x)). Such integration can be exceptionally difficult and complex particularly
when additional unknown parameters, termed nuisance parameters, are present (Spiegelhalter et al., 2004),
thus requiring the integrals to be evaluated over several dimensions. In such situations, posterior distributions
are best calculated with computer-based simulation methods such as Monte Carlo methods that evaluate these
complex integrations via simulation rather than algebraic analysis (Spiegelhalter et al., 2004). Gibbs sampling
is a type of MCMC method that successively samples variables from the posterior conditional distributions of
each parameter (Sutton and Abrams, 2001). With this method the unknown quantities are given initial values
and successive samples are obtained from the conditional distribution of each variable, given the current
sampled value of the other variables, with the premise that sampling will eventually occur from the correct
posterior distribution of the unknown parameters (Smith et al., 1995).

In Bayesian analysis, intervals containing 95% probability are termed credible or posterior intervals. Bayesian
95% credibility intervals can be distinguished from the traditional 95% Neyman-Pearson confidence interval
in several important ways (Spiegelhalter et al., 2004). The Bayesian 95% probability interval is interpreted as
the 95% probability that the true underlying 6 lies in the 95% Bayesian credible or posterior interval, whereas
the traditional 95% confidence interval is theorized to represent a long repeated series of confidence intervals
in which 95% of these intervals should contain the true underlying parameter value (Spiegelhalter et al., 2004).
Furthermore, Bayesian credibility intervals can be narrower than traditional confidence intervals as a result of
the addition of prior information into the conceptual framework of the meta-analytic model (Spiegelhalter et
al., 2004). The Bayesian framework offers the advantage of determining the probability that a parameter is
less or greater than a specific value with the use of posterior distributions for the parameters. In a Bayesian
analysis, the probabilities are estimated as the proportion of MCMC iterations in which the parameter is
greater than a pre-specified value (Higgins et al., 2009). Higgins et al. (2009) support the computation of
posterior probabilities as a good alternative to classical meta-analysis hypothesis testing.

Therefore, Bayesian research synthesis methods offer many desirable modeling properties over more
traditional meta-analytic methods particularly in the typical case of a meta-analysis of a small number of
studies. Schmid (2001) supports the use of Bayesian models because Bayesian models provide a statistically
informative summary of the parameters, incorporate all sources of variation into one model, and do not
require normal distributions. Furthermore, Sutton and Abrams (2001), and Sutton et al. (2000) recognize the
following advantages of Bayesian methods, because these methods offer: 1) full modeling of parameter
uncertainty, ii) inclusion of the totality of evidence by allowing the consideration of other pertinent evidence
(i.e. non-randomized evidence or expert opinion) that may otherwise be excluded by traditional methods, and
ii1) flexibility and extendibility with more complex data.

Recently, Bayesian hierarchical modeling has been proposed for synthesizing evidence from randomized and
non-randomized studies. Prevost et al. (2000) applied their method to combine evidence relating to the
relative risk for mortality from five randomized trials and five non-randomized studies evaluating
mammographic screening. Other applications of Prevost’s model include Grines et al. (2008) and Sampath et
al. (2007). As an extension to the model, Prevost et al. (2000) proposed the inclusion of study covariates to
explain differences in mean effects at the study type level. Although this is important, the authors did not
model differences between study arms, which may be a limitation of this approach when dealing with
non-randomized studies due to potential differences in baseline characteristics. Adjustment made using
aggregate values will not account for potential imbalances between study arms resulting from the lack of
randomization. Another extension proposed by Prevost made use of a prior constraint, reflecting the
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assumption that evidence from non-randomized studies, having been derived from study designs with
potential weaknesses (Ades et al., 2006), may be more biased than evidence from randomized studies. The
effect of the prior constraint is to down weight the evidence from the non-randomized studies. This approach
has been criticized as it may not eliminate bias (Eddy et al., 1990). Therefore, the objective of this proposal
was to extend the Bayesian three-level hierarchical model developed by Prevost et al. (2000) in order to
accommodate the greater potential for bias among the non-randomized studies by adjusting study estimates
for potential confounders using differences in patient characteristics between study arms. Modeling
differences between study arms is important in order to correct for potential imbalances within studies which
could bias the results.

4. MATERIALS AND METHODS

Informed healthcare decision making depends on the available evidence base. Where the available evidence
comes from different sources methods are required that can synthesis all of the evidence. The objective of the
first year is to adopt meta-analysis method as combining evidence on effects from randomized controlled
trials (RCTs) and non-randomized controlled trials (non-RCTs). The research method for establishing a
prognostic index model involves collecting a sufficient size of samples and developing the reliability of
hazard ratio for survival for each prognosis factor.

* Setting
In general, overall survival is the optimal endpoint of clinical study; however, this requires a substantial
timeframe and a vast sample size. For endometrial cancer, recurrence-free survival is a more suitable
endpoint in prognosis.

* Search Strategy
A systematic literature search up to December 2013 will be performed in MEDLINE (from January 1998),
SCOPUS (from May 1994) and Cochrane Library (from January 1985). Search terms using the keywords:
“endometrial cancer”, “prognosis”, “prognostic factor” and “recurrence”. The titles and abstracts will be
scanned to exclude any clearly irrelevant studies. The full texts of the remaining articles will be read to
determine whether they contained information on the topic of interest. Furthermore, to find any additional
published studies, a manual search will be performed by checking all the references of retrieved articles. All
searches will be conducted independently by two clinical physicians. At last the results be compared, and

any questions or discrepancies be resolved through iteration and consensus.

* Evaluating the quality of the literature
The methodological quality of the studies will be assessed using the modified Jadad scale for RCTs and the
Newcastle-Ottawa scale for non-RCTs.

* Data Analysis
The three-level Bayesian hierarchical model proposed by Prevost et al. (2000) extends the standard
two-level random-effects meta-analysis (Spiegelhalter et al., 2004) to include an extra level to allow for
variability in effect sizes between different types of evidence (e.g., randomized versus non-randomized study
designs). In addition to variability between study estimates within each study type, this model has the
capacity to deal with any added uncertainty due to study design (Ades and Sutton, 2006). The three levels
allow for inferences to be made at the study, study type, and population levels. Although the model can
accommodate more than two types of study designs, the application presented by Prevost et al. (2010)
combined evidence from two study types, randomized and non-randomized. This model can be written as
follows:

yij ~ Normal(y;, s;) (12)

yii ~ Normal(6;, O'f ) (13)
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0; ~ Normal(p, t°) (14)
where i = 1 or 2 for the 2 study types; j = 1,...,k; studies

At the first level of the model (12), y;; is the estimated log relative risk in the jth study of type i, which is
normally distributed with mean ;; and variance s; . The y;; represent the underlying effect, on the log

relative risk scale, in the jth study of type i. At the second level of the model (13), the v;; is distributed about
an overall effect for the ith type of study 6;, with & representing the between-study variability for studies

of type i. At the third level of the model (14) the study-type effects are distributed about an overall
population effect, p, with t* representing the between-study-type variability. To try to explain between study
heterogeneity, Prevost et al. (2010) extended their model to include a covariate for age at the study type level.
This is shown in the equation below.

vii ~ Normal(0; + (a X x;), 01.2) (15)

In equation 15, x;; take the values of 0 and 1 for studies of patients aged less than 65 years and studies of
women 65 years and over, respectively. The same approach was used by Sampath et al. (2007) to adjust for
study covariates representing continuous variables such as average age and proportion of males in each
study. Grines et al. (2008) did not conduct covariate adjustment but rather used funnel plots to assess
heterogeneity among individual study estimates.

While heterogeneity refers to unexplained variation, bias refers to systematic deviations from the true
underlying effect due, for example, to imbalances between studies arms (Centre for Reviews and
Dissemination, 2004). One potential source of bias is confounding (Greenland, 2005), where an extraneous
factor is associated with both the exposure under study (e.g., treatment) and the outcome of interest, but is
not affected by the exposure or outcome (Rothman et al., 2008). Only when the groups being compared are
balanced in all factors, both those that can be measured and those that cannot, that are associated with
exposure and that affect the outcome (other than treatment) will it be certain that any observed differences
between the groups are due to treatment and not the result of the confounding effects of extraneous variables.
Randomization increases the likelihood that the groups will be balanced not only in terms of the variables
that we recognize and can measure but also in terms of variables that we may not recognize and may not be
able to measure (i.e., unknowns) but that nevertheless may affect the outcome

(Gordi, 2004). In contrast, the greater likelihood of imbalances within the non-randomized studies could
have implications especially when combining both types of study designs. In order to deal with this problem,
we will extended Prevost’s three-level model to adjust for differences within studies rather than adjusting for
aggregate values at the study type level as in equation 15. The proposed approach uses the variation in
imbalances across studies to adjust for differences in patient characteristics between treatment arms within
studies. As with RCTs, the resulting balance in patient characteristics within studies should avoid the
influence of confounding.

The following presents an extension of Prevost’s model based on odds ratios, but could be extended to
relative risk. This analysis will be undertaken using a binomial model in which the odds of the event are
calculated for each study and study arm level information is incorporated in the model. The proposed model
can be written as follows:

e, ~Binomial( P, .ne, ) and n, ~Binomial( by .ng ) (16)
log odds(PC[/) = v; and log odds(PT[/) = v t Wi (17)
v ~ Normal(®; +>"" @, (X - Xnci)s O;) (18)
0; ~Normal(p, 7°) (19)
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where i = 1 or 2 for the 2 study types j = 1,...,k; studies, m = 1,..,M confounders. It is assumed that the
number of events in each arm in the jth study of type i follows a binomial distribution defined by the
proportion of patients who experience the event in each arm in the jth study of type i and the total number of
patients in each arm in the jth study of type 7, as shown in Equation 17 describes the log odds for the event in
the control y;; and treatment y;; + y; arms of each of the k; studies.

This proposed model assumes that the log odds ratio y;;, follows a normal distribution with a mean which is
the sum of 0; (i.e., the overall intervention effect in the ith type of studies) and a study specific bias
adjustment, om(XmTij - Xmcjj), that is proportional to the relative differences between the study arms in each of
the studies. In this expression, Xmtij and Xmcij are the values of the mth potential confounder in each of the
study arms in the jth study of type i while oy, represents the mean bias for the mth potential confounding
variable, across all the studies. All of the analyses will be conducted using MCMC simulation implemented.
The generated parameter values were monitored and summary statistics such as the median and 95%
credible interval of the complete samples will be obtained. In addition, data will be analyzed using the
Comprehensive Meta-Analysis software. The results will be expressed as pooled hazard ratios and 95%
confidence intervals. Study-to-study variation be assessed using the Higgins I* test. When significant
heterogeneity (p-value < 0.1 or I* > 50%) is not observed between the subgroups, the fixed effects model
will be used, or the random effects model will be used.

* Prognostic Index Model
When a pooled hazard ratio for each prognosis factor has found through meta-analysis, the regression
coefficient, drawn by applying a regression function to the pooled hazard ratio will be expressed as the
weight value for each prognosis factor. The prognostic index can be expressed
in PI Formula=a,x, +a,x, +...+a,x, where x is the prognosis factor significantly affecting recurrence-free

survival on meta-analysis, and « is the regression coefficient for the pooled hazard ratio.

* Application of the PI model - Clinical Risk estimation
Applying this PI Model to 179 patients diagnosed with endometrial cancer at our university hospital, the
patients will be divided into three groups depend on their PI values. The plan is to execute recurrence-free
survival analysis through Kaplan-Meier methods and thus to evaluate the significance in recurrence
prediction of endometrial cancer. In addition, the PI value to maximize sensitivity and specificity will be
found with respect to the occurrence of recurrence in these patients. Further, patients will be divided into
two groups (high/low-risk) and Cox regression test will be executed, which is the method to obtain the
cutoff PI value to maximize the hazard ratio for recurrence prediction. Finally, the SPSS software will be
used for survival analysis, and p-values < 0.05 will be considered statistically significant.

5. THE RESULT OF THIS PROJECT

In this study, we ultimately enrolled 8 studies (Zullo et al., 2012; Wei et al., 2009; Humber et al., 2007,
Palomba et al., 2009; Liu et al., 2014; Esposito et al., 2014; Shim et al., 2014; Huang et al., 2013). Among
them, some of the studies were RCTs (Zullo et al., 2012; Wei et al., 2009; Humber et al., 2007; Palomba et al.,
2009) and some were observational studies (Liu et al., 2014; Esposito et al., 2014; Shim et al., 2014; Huang et
al., 2013). The results of intervention effects for hazard ratios, as proposed in these studies, were as follows.

The methodological qualities and the results of the studies included in this meta-analysis are summarized in
Table 1.

For tumor grade of cell carcinoma, based on the references (Zullo et al., 2012; Ran et al., 2014) that it reflects
a bad prognosis beyond poor differentiation, it was included in grade 3. As the result of a fixed effects model
(I2=0.03%), tumor grade 2 demonstrated a significant hazard ratio (HR) compared to grade 1 in terms of RFS
(HR=2.11, 95% CI; 1.86-3.57). As for tumor grade 3, a random effects model was applied (12=75.3%),
demonstrating a significant HR of about 2.37 times that of grade 1 (HR=2.38, 95% CI; 1.55-4.07). The
literature review of FIGO substage was as follows. The result of multivariate analysis comparing stage la and
stage Ib was only suggested in the study of Barry et al. (2014), and stage Ib was found to show a significant
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HR in RFS of 1.59 times that of stage Ia (HR=1.58, 95% CI; 1.47-2.66). Considering the reports by Barry et
al. (2014) and Zullo et al. (2012), there was no significant difference between stage Ic and stages Ib, and thus
stage Ic and stage Ib were assumed to show the same HR. As for stage II, the fixed effects model was applied
(I2=0.02%), and as a result, it showed a significantly higher HR of 2.22 times that of stage [ (HR=2.14, 95%
CI; 1.87-2.63). However, stage I here included all stages of Ia, Ib, Ic, so correction of the above HR was
inevitable. This study assumed the situation with maximized risk to determine the HR. Therefore, the final HR
of stage II took stage Ia as reference, and was processed as the multiple of stage Ib and the aforementioned
pooled HR. The final HR of stage Il was determined to be 3.51(reference: stage Ia).

Table 1 The methodological qualities and the results of the selected studies

Researcher(s) Type The quality of methodologies

Zullo et al. (2012) RCT modified Jadad Score: 7 (high)

Wei et al. (2009) RCT modified Jadad Score: 5 (high)
Humber et al. (2007) RCT modified Jadad Score: 5 (high)
Palomba et al. (2009) ~ RCT modified Jadad Score: 6 (high)

Liu et al. (2014) Non- RCT/ Observational studies ~ Newcastle-Ottawa Score: 5 stars (high)
Esposito et al. (2014) Non- RCT/ Observational studies  Newcastle-Ottawa Score: 5 stars (high)
Shim et al. (2014) Non- RCT/ Observational studies  Newcastle-Ottawa Score: 6 stars (high)
Huang et al. (2013) Non- RCT/ Observational studies  Newcastle-Ottawa Score: 5 stars (high)

According to the study of Wei et al. (2009), those over 55 years of age upon multivariate analysis have been
reported to show a significant HR compared to those below 55 years (HR=1.67, 95% CI; 1.51 - 2.37). Also in
the large-scale multi-institutional retrospective study (Palomba et al., 2009), 1 year increase in age led to a
significant increase (1.17 times) in HR (HR=1.35, 95% CI; 1.07-1.18). In this study, while other prognosis
factors were categorical variables, age was the only consecutive variable. Inadequate staging where
lymphadenectomy was not executed had a significantly higher risk for recurrence of about 1.87 times that of
an optimal staging procedure including lymphadenectomy (HR=1.77, 95% CI; 1.53 - 2.64). Also, cases with
postoperative adjuvant chemotherapy of 3 cycles or more showed significant HR of 0.74 times that of cases
with observation (HR=0.81, 95% CI; 0.67-0.98). In cases of histologic cell type, it is the predominant
conclusion that the results of related references (Liu et al., 2014) shows insignificant HR, and thus this paper
concluded that the influence of histologic cell type recurrence on early-stage was not significant. After finding
the regression coefficient for each of the pooled HR above, the PI formula was proposed as follows. PI=2.3x

age+84 (if grade 2) or 135 (if grade 3)+69 (if stage Ib or Ic) or 127 (if stage 11)+43 (if no lymphadenectomy)—
57 (for adjuvant chemotherapy of 3 times or more)+24 (calibrating constant).

6. DISCUSSION AND CONCLUSION

In our study, there are five factors (age, tumor grade, FIGO stage, optimal staging including
lymphadenectomy, and postoperative adjuvant chemotherapy) selected as independent prognosis factors. It is
the dominant opinion so far that CA125 does not reflect the prognosis for recurrence in early-stage. Also,
Histologic cell type was not included in the PI formula as well. As all the resources used in our study targeted
Western people, the issue of ethnic factors of whether these research results can be applied to Taiwanese needs
to be addressed. The limitation of this study is that our meta-analysis included non-RCTs and RCTs which
were different in study design. The risk of bias in non-RCTs is higher than in RCTs. Especially, in cases where
the variables of non-RCTs included in meta-analysis vary, it would be unreasonable to integrate the result
values. However, it does not imply that meta-analysis cannot be executed at all, and eventually the meaning of
the result values integrated by the meta-analysis becomes limited.

As all result values of RCTs and non-RCTs used in our study were obtained by multivariate Cox regression
analysis only, they might be sufficiently compensated for by the influence of other variables. In addition, most
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result values of non-RCTs had homogeneity similar to those of other RCTs in our study. Therefore, it would
be possible to acknowledge the legitimacy of our meta-analysis integrating the results of RCTs and non-RCTs.
In conclusion, the PI formulas proposed in this study were able to distinguish high-risk and low-risk groups
for recurrence of early stage allowing it to be an important resource for the selection of appropriate treatment
options for patients according to recurrence risk. In the future, through a large-scale multi-institutional study,
the utility and applicability of the PI formula hypothetically proposed in this report should be further studied.

To our knowledge, this is the first study to investigate the prognostic index model for endometrial cancer in
Taiwan. The greatest strength of this study was the used of meta-analysis to help extract clinical information
from the existing literature. In future work, the relationship between obesity and endometrial cancer has been
extensively investigated, yet its impact on mortality and life expectancy of a general Taiwanese female
population has not been well studied. Recommendations for future research could be: to consider BMI in the
relationship between endometrial cancer and mortality rate as well as life years lost associated with
endometrial cancer.
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Objectives
The choice of treatment for cervical cancer depends partly upon the risk of

2



recurrence. This is usually done using clinical judgement alone, and can be difficult.
The objective of the present study was to identify the significant recurrent factors
for cervical cancer. In addition, we developed C5, Multivariate Adaptive Regression
Splines (MARS) and Random Forest (RF) model for predicting the recurrent
factors.

Methods

To find out the recurrent factors, we first constructed a risk factor set through an
extensive literature review of cervical. The cervical cancer dataset provided by the
Chung Shan Medical University Hospital Tumor Registry is used in this study. Each
patient in the dataset contains 12 predictor variables and the dependent variable is
recurrence or no. We evaluated three models and compared their results using three
statistical indices: accuracy, sensitivity and specificity.

Results

The findings revealed that Pathologic Stage, Pathologic T, Cell Type and RT target
Summary were the most important prognostic factors, in contrast to other similar
analysis (Grisaru et al., Cancer 97:1904-1908). The average correct classification
rates / area under the curve of the C5.0, MARS and RF models are 0.924 / 0.889,
0.866 /0.838 and 0.854 / 0.919, respectively.

Conclusions

Based on the findings, the C5.0 model not only generates the better

classification result, but also can be used to select important independent variables
for recurrent cervical cancer. For medical interpretation, we can develop some
results by which a physician caring a patient can better decide when to take the

critical intervention.
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