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: The discoveries that NO plays a key role for a surprising

range of physiological and pathological processes in humans
have led many researchers to revisit the chemistry of NO
and 1ts derivatives such as dinitrosyl iron complexes
(DNICs) in recent years. Till now, NO has been found to
play an important role in vascular system regulation,
signaling between nerves in both the peripheral and central
nerve system, and in immune response to pathogen.
Dinitrosyl iron complexes (DNICs) and S-nitrosothiols
(RSNO) have been suggested as one of the possible forms for
storage and transport of NO in biological system. Recently,
Prof. Kim has demonstrated that the {Fe(N0)2}10 DNICs
served as a nitrating agent to convert 2,4-di-tert-
butylphenol to 2, 4-di-tert-butyl-6-nitro-phenol in the
presence of 02, and claimed that cellular DNICs could
provide the possible route to generate protein tyrosine
nitration (PTN) which is an important post-translational
modification associated with various pathological
conditions. In addition, Prof. Kim also showed the possible
biological function

of cysteine oxidation. In this work, we have synthesized a
series of mononuclear dinitrosyl iron complexes (DNICs 1-5)
with analogous coordination geometry but different
electronic configuration. The further work will focus on
the study of the 02, 02- and 022- reactivity and the
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ability serving as the nitrating agent in the phenol
nitrating reaction and as the oxidant in the thiolate
oxidizing reaction. The formal charge of Fe atom, NO group
and thiolate on these iron nitrosyl complexes will also be
scrutinized on the basis of EPR, SQUID, DFT computation and
Fe/N K-edge X-ray absorption spectroscopy (XAS). Also, the
physical characterization will be correlated to the
relationship between the ability of phenol nitration,
thiolate oxidation mediated by DNICs and the electronic
structure of

DNICs.

Dinitrosyl iron complex, dioxygen, peroxide, superoxide



Biochemical insight into the reactivity of dinitrosyl iron

complexes with dioxygen, superoxide and peroxide

Introduction

The physiological and biological functions of nitric oxide in living organisms
are an area of intense investigation, because of the discovery of more and more
function of nitric oxide including principal neurotransmitter mediating erectile
function,' a critical endogenous regulator of blood flow and thrombosis,” * a major
path physiological mediator of inflammation and host defense.” The naturally
cellular NO is almost produced by NO synthases via a five electron oxidation of
L-arginine.” However, the increasing evidence suggests that NO can also behave as a
cytotoxic effector and/or a pathogenic mediator under NO overproduction. ®” The
cytotoxicity of NO is supposed to relate to the formation of some reactivity nitrogen
species (RNS) such as peroxynitrite or nitric dioxide. It is believed that the presence
of reactive oxygen species (ROS) such as superoxide radical(O,") and hydrogen
peroxide (H>O;), and transition metal centers are required for the produce of the
reactive nitrogen species (RNS) from NO. ®7 In addition, reactive nitrogen species
(RNS) and reactive oxygen species (ROS) are involved in the in vivo oxidative
reaction in biological system and play an important role in aging and the
development of diseases.® At high concentrations, ROS/RNS can induce oxidative
damage to DNA, lipids, and proteins, a phenomenon named as oxidative /nitrative
stress, while at low/moderate concentrations, ROS/RNS are important messengers
for signal transduction.®’

Recently, RNS mediated nitration of biological phenols, such as seen in protein

tyrosine nitration (PTN), has been observed in a variety of human diseases

associated with oxidative stress, such as inflammatory, neurodegenerative, and



cardiovascular conditions.® '*'® In addition, PTN is also usefully diagnostic

1719 Recent reports indicate that

biomarker for Alzheimer’s, and Parkinson’s diseases.
distinct cellular nitrating agents could be responsible for it specificity at various
sites.'*?* Although the underlying mechanism of protein tyrosine nitration in vivo is
still unclear, two reactive nitrogen compounds, the peroxynitrite anion (ONOO") and
nitrogen dioxide (*NO2), are thought to be involved.”' eNO, may be generated via
several mechanism, including oxidation of eNO with oxygen,* the decomposition of
peroxynitrite (ONOO ),2"**2* and the oxidation of nitrite (NO, ) by hydrogen
peroxide (H,0,) catalyzed with peroxidases.”> However, peroxynitrite doesn’t react
directly with tyrosine. The mechanism of tyrosine nitration was first found to
mediate via peroxynitrite on a free radical based mechanism but it turned out that
heme-containing proteins facilitated this reaction by the formation of ferryl
intermediates. Prostacyclin synthase was proven sensitive to nitration by
peroxynitrite which could be efficiently prevented by an inhibitory substrate
analogue. This result indicated that tyrosine nitration was a metal-mediated process
in close proximity to the active heme-iron site.”***

Peroxynitrite (ONOO ) is generally generated in vivo from the
diffusion-controlled reaction between superoxide (O, ) and nitric oxide (eNO).>"+*
3% Peroxynitrite is both an oxidant and nucleophile and these chemical properties
dictate to the formation of secondary free radical intermediates such as nitrogen
dioxide and carbonate radicals.’’ Peroxynitrite has been shown to oxidize various
biomolecules including lipids, thiols, amino acid residues, DNA bases, as well as
low- molecular weight antioxidants. The most prominent protein modifications
mediated by peroxynitrite are the nitration and dimerization of tyrosine residues, the

oxidation of cysteine thiol group, as well as the oxidation of methionine sulfur

26
groups.



In chemistry, the reactivity of dioxygen toward metal nitrosyl complexes has
been thoroughly investigated, in particular because of the possible use of these
complexes to activate dioxygen.’ In addition, heme proteins and their models have
been studied extensively to evaluate the role of transition metal ions in generation,
stabilization, and activation for substrate oxidation and thermal isomerization of
peroxynitrite (ONOO ).* In 2000, Prof. Koppenol reported the rare discrete
structurally characterized metal—peroxynitrite complex, cobalt—peroxynitrite
(tris(tetraethylammonium) pentacyanoperoxynitritocobalta‘[e(IH)).34

In addition to the stable cobalt—peroxynitrite complex, iron (e.g., heme),
manganese, and copper complexes have been studied with respect to bio(chemical) O
=NOO mediated chemistry. For examples, [Cu'(AN)(NO)]" (AN =
3,3’-iminobis(N,N’-dimethylpropylamine)) has been synthesized by Prof. Karlin in
2009 and then be used to react with dioxygen at -80°C affording [Cu"(AN)(O=NOO
)]". After the thermal transformation of [Cu''(AN)(O=NOO)]*, [Cu(AN)(NO,)]"
was afforded.”” In the meantime, addition of 2, 4-di-tert-butylphenol in to

[Cu'(AN)(O=NOO)]" led to 2,4-di-tert-butyl-6-nitro-phenol (Schemel) via phenol

nitration.
Scheme 1.
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Also, the putative formation of a copper(I)—peroxynitrite intermediate via
reaction of the mononuclear copper(Il)—nitrosyl complexes with H,O, at -20°C was
reported by Prof. Mondal in 2012 and 2013, respectively(Scheme 2 and 3).>**’
Formation of the peroxynitrite intermediate has been confirmed by its characteristic
phenol ring nitration reaction as well as isolation of corresponding Cu(I)—nitrate and
nitrate ion, respectively. Recently, Prof. Kim also reported the formation of the

putative iron-peroxynitrite intermediate via reaction of the dinitrosyl iron complexes

in 20118
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DNICs are NO derivatives of biological relevance, found in various tissues and
cells during NO overproduction by the inducible nitric oxide synthase. **** In vivo,
the naturally occurring DNICs are classified into protein-bound DNICs and
low-molecular-weight DNICs (LMW-DNICs).** Protein-bound DNICs derived
from NO-mediated degradation of Fe-S cluster containing proteins are considered as
the storage of NO or {Fe(NO),} moiety, and LMW-DNICs yielded via the
displacement of protein-bound DNICs with free thiols/thiolates are served probably as
the donor of NO or {Fe(NO),} moiety.

Up to now, only one example of the crystallographically characterized
protein-bound DNIC, derived from introducing an exogeneously formed
(glutathione),Fe(NO), into human glutathione S-transferase (GST P1-1), has been
reported.” Although the protein-bound DNIC with [S,0] ligation mode was well
characterized by X-ray diffraction, it is still difficult for isolation and structural
determination of the DNICs derived from NO-mediated biological processes. The

difficulty has inspired the efforts in the syntheses of adequate DNICs to serve the

+  NO; +[Cu(CH;CN),] *



spectroscopic references for the intermediates in the NO-mediated biological
processes and the study of potential NO delivery systems.

Recently, dinitrosyl iron complexes (DNICs) with different kinds of coordinated
ligands (S-/O-/N-containing ligands) have been synthesized and are classified into the
paramagnetic, oxidized form DNICs ({Fe(NO),}’ DNICs) and the diamagnetic,
reduced from DNICs ({Fe(NO),} '’ DNICs), based on the Enemark-Fetham notation.
In the meanwhile, the interconversion between dinuclear DNICs (RREs, anionic
RREs, dianionic RREs) and mononclear DNICs (oxidized and reduced form DNICs)
has been also demonstrated.”' ™’

Also, these synthetic DNICs were employed to study the possible reactivity and
formation pathways of nature occurring DNIC in biological systems. In 2006, Prof.
Liaw and Lippard showed the conversion of biomimetic oxidized- and reduced-form
rubredoxin [Fe(SR)4]*"" into DNICs in the presence of NO(,) or RSNO, meanwhile,
the intermediate mononitrosyl tris(thiolate) complexes [Fe(SR);(NO)] of
nitrosylation were isolated and the reactivity was elucidated.®' Prof. Liaw and
Lippard also demonstrated the formation of DNICs from [2Fe-2S] clusters by reaction
of biomimetic [2Fe-28] ferredoxins [SsFe(p-S).FeSs]*/ [(PhS) Fe(u-S).Fe(SPh),]*
with NO(g or RSNO.%*®* At the same time, Prof. Lippard found that [2Fe-2S] clusters
reacted with NO(,) yielding Roussin’s black salt (RBS) instead of DNIC under dilute
NO concentrations (< 100 uM). Prof. Lippard also investigated the nitorsylation of
[4Fe-4S] clusters and found that reaction of the [4Fe-4S] clusters, [Fe4S4(SR)4]*, with
NOy) afforded Roussin’s black salt (RBS), while reaction of the [4Fe-4S] clusters,
[FesS4(SR)4]>, with NOy) in the presence of 4 equiv of [SR] yielded DNIC. 1In
contrast, the transformation of DNICs into [4Fe-4S] clusters, [FesS4(SPh)4]” in the

presence of [Fe(SR)4]*"" and S-donor species S via the reassembling process

([(NO),Fe(SPh),]” —[FesS3(NO)-]/ [FesS3(NO);]> —[FesSs(NO), >



—>[Fe4S4(SPh)4]*) was demonstrated by Prof. Liaw and co-workers.* The study of
DNIC-to-RSNO transformation which utilized Brensted acid and Lewis base
(Me;NCS,); to trigger one-thiolate containing DNIC to convert into S-nitrosothiol
may reasonably rationalize that the 70% protein-SNO are surrounded within 6 A by
negatively and positively charged amino acids which are proposed to regulate the
DNIC-to-RSNO transformation.® In addition, study on repair of DNICs yielding
biomimetic [2Fe-2S] [Fex(u-S)2(SR)s]*  reveals that the anionic mixed
thiolate-sulfide-bridged RREs acts as a key intermediate in the transformation of
DNICs into [2Fe-2S] clusters.’® Studies of the nitrite-containing DNICs, MNICs and
interconversion of the nitrite-containing {Fe(NO),}’ and {Fe(NO),}'° DNICs
indicated that the nitrite-to-nitroxyl-to-nitric oxide conversion pathway is activated by
the {Fe(NO),}’ DNIC and accompanied by transformation off {Fe(NO),}’ to
{Fe(NO),}'%; the nitrite-to-nitrosonium-to-nitric oxide conversion pathway is
activated by the {Fe(NO),} " DNIC and accompanied by transformation off
{Fe(NO),}'" to {Fe(NO),}°." ¢

Although the synthesized DNICs have been widely studied to offer important
chemical and biological insights, the study on the O, reactivity of DNICs is limited to
few examples. In 1989, Prof. Postel reported the first example of DNICs toward O,.
As shown in Scheme 4, oxidation by oxygen of the unstable DNIC
[Fe(NO),CI(HMPA)], afforded from reaction of [Fe,Cl,(NO)4] with HMPA, resulted

in the formation of the nitrato-complex [Fe(NO3)Cl,(HMPA)].*
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In 2011, Prof. Kim studied the dioxygen reactivity of an N-bound {Fe(NO),}"
DNIC, [Fe(TMEDA)(NO),] (TMEDA =
N,N,N’ N’-tetramethylethylenediamine).”® As presented in Scheme 5, the report
demonstrated the formation of a stable five-coordinate iron-peroxynitrite
[Fe(TMEDA)(NO)(ONOO)], characterized by FTIR and Fe K-edge X-ray
absorption spectroscopy when [Fe(TMEDA)(NO);] reacted with dioxygen at -80
°C. In addition, when dioxygen is added to a mixture of [Fe(TMEDA)(NO),] and
DBP (2,4-di-tert-butylphenol) at -80 °C and then is subsequently warmed to room
temperature, NO,-DBP (2,4-di-tert-butyl-6-nitro-phenol) is observed along with
3,3’,5,5 -tetra-tert-butyl-1,1’-biphenyl. This result reasonably suggested that
DNICs act as mobile nitrating reagent in cells, in addition to the role of NO storage

and transfer.
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In 2012, Prof. Kim demonstrated the reaction of another {Fe(NO),}'° DNIC
[Fe(dmp)(NO),] with dioxygen. As shown in Scheme 6, the reaction resulted in the
formation of the room-temperature-stable nitrato-containing complex
[Fe;O(NO3)4(dmp),]. It is noted that [Fe;O(NO3)4(dmp);] is incapable of nitrating
DBP to NO,-DBP, but [Fe(dmp)(NO);] in the presence of dioxygen does
effectively nitrate DBP to NO,-DBP. This result reveals that the iron-peroxynitrite
species plays a critical role in phenol nitration and it forms prior to the formation

of [Fe;O(NO;)4(dmp),].”°
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In 2013, Prof. Kim proceeded the dioxygen reactivity of thiolate-contaning
{Fe(NO),}° DNICs. As shown in scheme 7, reaction of dioxygen with
[Fe(NO)2(SR)2] (R =t-Bu, Et, Ph) afforded [Fe(NO)»(SR)],. Based on the study of
dioxygen reactivity of N-bound {Fe(NO),}'® and S-bound {Fe(NO),}’ DNICs, the
research group concluded that N-bound DNICs oxidation by dioxygen occurs at the
NO group of {Fe(NO),} unit and S-bound DNICs oxidation by dioxygen occurs at

the S-bound ligands.”"
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The study on the reactivity of DNICs with molecular oxygen by Prof. Kim
inspires us to consider the following questions. (1) It has found that [N,N]-bound
{Fe(NO),}'° DNICs could react with molecular oxygen to form iron-peroxynitrite and
proceeded the phenol nitration. Could the [N,N]-bound {Fe(NO),}’ DNICs
demonstrate the same chemical properties? And are {Fe(NO),}’ DNICs more
effective in phenol nitration then {Fe(NO),} ' DNICs? (2) Will the subtle variations
of the formal oxidation state of Fe and the charge of NO in [N,N]-bound {Fe(NO),}’
and {Fe(NO),} ' DNICs give influences on the reactivity of DNICs with molecular
oxygen and the mechanism of phenol nitration? (3) Though the reactivity of DNICs
with dioxygen has been investigated, the reactivity of DNICs with superoxide and
peroxide has not been present. In addition, the study on the reactivity of DNICs with
superoxide may give valuable biological relevance because peroxynitrite (ONOO ) is
generated generally in vivo from the diffusion-controlled reaction between superoxide
(0, ") and nitric oxide (eNO),*"***° We designed the following experiments to
answer these questions and to the purse the specific objectives mentioned above.

The experimental method included the syntheses and physical characterization of
a series of mononuclear [N,N]-bound DNICs containing {Fe(NO),}"/{Fe(NO),} "
electronic configurations. The physical characterization of the synthetic DNICs will
allow us to distinguish the variations of formal oxidation state of Fe and the charge of
NO in {Fe(NO),} motifs of the synthetic DNICs with different electronic
configurations and relate to the possibly different reactivity of dioxygen, superoxide,
and peroxide with DNICs and efficiency of phenol nitration induced by the variations

of formal oxidation state of Fe and the charge of NO in {Fe(NO),} motifs of DNICs.



Results and discussion

Though the redox reactivity of DNICs has been studied, the study on redox
reactivity of DNICs is limited to the reaction of DNIC with reductant and oxidant.””>’
The reactivity of DNICs with dioxygen, superoxide and peroxide is rare. In order to
study the different reactivity toward dioxygen, superoxide and peroxide induced by
the distinct electronic configuration of DNICs ({Fe(NO),}’/{Fe(NO),} '’ DNICs), it is
necessary to prepare the {Fe(NO),}’/{Fe(NO),}'® DNICs with the same coordinating
environment(homologous DNIC redox-partners). The following homologous DNIC
redox-partner DNICs 1 and 2 were prepared according to scheme 8. Reaction of
Fel(NO)(TMEDA) with the deprotonated 2,2'-Methylenebisbenzothiazole afforded
the {Fe(NO),}’ DNIC 1. The further reduction of DNIC 1 with BH, ™ afforded
{Fe(NO),} ' DNIC 2. In addition, the DNIC with a modified similar ligand will also
be prepared to evaluate the influence on the formal oxidation state of Fe and the
charge of NO induced by the modified ligand. DNIC 3 with {Fe(NO),}'® fragment
was prepared by reaction of Fe(CO),(NO), with 2,2'-Methylenebisbenzothiazole as
shown in scheme 9. The formation of DNIC 1, DNIC 2, and DNIC 3 have been

structurally characterized by single-crystal X-ray diffraction and the structures are

depicted in Figures 1 - 3.
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Scheme 9.
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Figure 1. ORTEP drawing and labeling scheme of DNIC 1 with thermal ellipsoids
drawn at 50 % probability level.

Figure 2. ORTEP drawing and labeling scheme of DNIC 2 with thermal ellipsoids
drawn at 50 % probability level.



Figure 3. ORTEP drawing and labeling scheme of DNIC 3 with thermal ellipsoids
drawn at 50 % probability level.

In addition, the other homologous monomeric [N,N]-bound DNICs redox
partners could be prepared as shown in scheme 10.%° Reaction of Fe(TMEDA)(NO),
and carbazolate afforded {Fe(NO),}'’ DNIC 4. The further oxidation of {Fe(NO),}'
DNIC 4 with Cp,FeBF;, resulted in {Fe(NO),}’ DNIC 5. The structures of DNIC 4
and DNIC 5 were characterized by single-crystal X-ray diffraction and the ORTEP
drawing and labeling schemes were shown in Figures 4 and 5. In a similar fashion,
these DNICs will react with dioxygen, superoxide and peroxide. We expect the
reaction results could be consistent with the physical characterization of these DNICs.

Scheme 10
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Figure 4. ORTEP drawing and labeling scheme of DNIC 4 with thermal ellipsoids
drawn at 50 % probability level.

Figure 5. ORTEP drawing and labeling scheme of DNIC 5 with thermal ellipsoids
drawn at 50 % probability level.

Conclusions
A series of mononuclear four coordinate mononuclear {Fe(NO),}°/{Fe(NO),}'"
DNICs (DNICs 1-5) have been synthesized successfully and characterized by IR,

UV/vis, 'H NMR, EPR. The SQUID measurements of DNICs 1-5 and studies on the



electronic structure (NO/Fe oxidation states) of the series of {Fe(NO),}°/{Fe(NO),} '’
DNICs by X-ray absorption spectroscopy and DFT calculations are ongoing. Also, the
reactivity of dioxygen, superoxide and peroxide toward {Fe(NO),}’/{Fe(NO),}"
motifs are currently being investigated in our laboratory. Similarly, phenol nitration
and thiolate oxidation induced by the possible iron-peroxonitrite intermediate
resulting from the reaction of dioxygen, superoxide and peroxide with DNICs 1-5 will
be studied to correlate the relationship between the yields of nitro-phenol/cysteine

sulfinic acid and the formal charge of Fe atom and NO group in DNICs 1-5.
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