中山醫學大學機構典藏 CSMUIR:Item 310902500/4435
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 17918/22933 (78%)
造访人次 : 7429178      在线人数 : 86
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.csmu.edu.tw:8080/ir/handle/310902500/4435


    题名: Tailor-Made Zinc-Finger Transcription Factors Activate FLO11 Gene Expression with Phenotypic Consequences in the Yeast Saccharomyces cerevisiae
    作者: Shieh, Jia-Ching
    Cheng, Yu-Che
    Su, Mao-Chang
    Moore, Michael
    Choo, Yen
    Klug, Aaron
    贡献者: 中山醫學大學
    生物醫學科學系
    日期: 2007-07-17
    上传时间: 2012-08-09T07:01:13Z (UTC)
    ISSN: 1932-6203
    摘要: Cys2His2 zinc fingers are eukaryotic DNA-binding motifs, capable of distinguishing different DNA sequences, and are suitable for engineering artificial transcription factors. In this work, we used the budding yeast Saccharomyces cerevisiae to study the ability of tailor-made zinc finger proteins to activate the expression of the FLO11 gene, with phenotypic consequences. Two three-finger peptides were identified, recognizing sites from the 5′ UTR of the FLO11 gene with nanomolar DNA-binding affinity. The three-finger domains and their combined six-finger motif, recognizing an 18-bp site, were fused to the activation domain of VP16 or VP64. These transcription factor constructs retained their DNA-binding ability, with the six-finger ones being the highest in affinity. However, when expressed in haploid yeast cells, only one three-finger recombinant transcription factor was able to activate the expression of FLO11 efficiently. Unlike in the wild-type, cells with such transcriptional activation displayed invasive growth and biofilm formation, without any requirement for glucose depletion. The VP16 and VP64 domains appeared to act equally well in the activation of FLO11 expression, with comparable effects in phenotypic alteration. We conclude that the functional activity of tailor-made transcription factors in cells is not easily predicted by the in vitro DNA-binding activity.
    URI: https://ir.csmu.edu.tw:8080/ir/handle/310902500/4435
    http://dx.doi.org/10.1371/journal.pone.0000746
    關聯: PLOS ONE
    2007 8 issue8 e746
    显示于类别:[生物醫學科學學系暨碩士班] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html期刊論文0KbHTML532检视/开启


    SFX Query

    在CSMUIR中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈