中山醫學大學機構典藏 CSMUIR:Item 310902500/24512
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 17918/22933 (78%)
造访人次 : 7421326      在线人数 : 274
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.csmu.edu.tw:8080/ir/handle/310902500/24512


    题名: Effect of Bioactivity of Surface Topography and Coating Forming by Infrared Light-Induced on Titanium for Bone Repair
    作者: Tang, CM;Fan, FY;Lin, WT;Wang, LP;Lin, WC
    关键词: laser-assisted biomimetic;infrared light-induced;coating;calcium phosphate;bioactivity
    日期: 2020
    上传时间: 2022-08-09T08:03:33Z (UTC)
    出版者: MDPI
    摘要: Calcium ions and phosphate ions are usually present in biological organisms and human bodies. Different ratios of calcium to phosphorus result in different types of calcium-to-phosphorus crystals. Hydroxyapatite (HA) is the main component of human hard bony tissues. It has good biocompatibility and is often used in bone repair. With the addition of cobalt ions, it can act as a hypoxia-inducing factor to accelerate the regeneration of hard bony tissues. At present, the laser-assisted biomimetic (LAB) method can very quickly deposit calcium phosphate coatings, which can be used on polymer and titanium surfaces. In this study, we first used anodization treatment (with TiO2 nanotubes (TNTs)), alkali treatment (with NaOH), and acid treatment (with HCl) to form nanopore structures on titanium surfaces in the laboratory. Subsequently, LAB treatment was used to deposit calcium phosphate and cobalt-substituted hydroxyapatite onto titanium pieces with different surface treatments. The results showed that smaller holes resulted in better deposition (TNTs), and controlling the pH value in the solution changed the crystal morphology. LAB treatment imbued the titanium surface with super-hydrophilic properties and improved biocompatibility. A human osteoblast cell line (MG-63) used for the cell viability test showed that LAB treatment can improve cell growth. In particular, TNT-CoHA (cobalt-substituted hydroxyapatite) cells grew the best. Immersion in simulated bodily fluid confirmed that LAB treatment with a CoHA solution improved the hydrophilicity, biocompatibility, and bioactivity of titanium surfaces. It is hoped that this study provides useful information for surface coating of biomedical materials in the future.
    URI: http://dx.doi.org/10.3390/app10228158
    https://www.webofscience.com/wos/woscc/full-record/WOS:000594160800001
    https://ir.csmu.edu.tw:8080/handle/310902500/24512
    關聯: APPLIED SCIENCES-BASEL ,2020 ,v10 ,issue 22
    显示于类别:[中山醫學大學研究成果] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML200检视/开启


    SFX Query

    在CSMUIR中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈