中山醫學大學機構典藏 CSMUIR:Item 310902500/24448
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 17918/22933 (78%)
造访人次 : 7430077      在线人数 : 44
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.csmu.edu.tw:8080/ir/handle/310902500/24448


    题名: Enhanced antibacterial activity of calcium silicate-based hybrid cements for bone repair
    作者: Lin, MC;Chen, CC;Wu, IT;Ding, SJ
    关键词: Calcium silicate;Bone cement;Chitosan;Anti-washout;Antibacterial activity
    日期: 2020
    上传时间: 2022-08-09T08:02:29Z (UTC)
    出版者: ELSEVIER
    ISSN: 0928-4931
    摘要: Calcium silicate cement has attracted much attention for bone defect repair and regeneration due to its osteogenic properties. Biomaterial-associated infections and washout have become a common clinical problem. In order to enhance the antibacterial and washout performance of calcium silicate cement to meet clinical needs, different types of chitosan, including chitosan polysaccharide (CTS), quaternary ammonium chitosan (QTS), and chitosan oligosaccharide (COS), as a liquid phase were added to the calcium silicate powder. The physicochemical properties, in vitro bioactivity, antibacterial efficacy, and osteogenic effects (MG63 cells) of the cement were evaluated. Antibacterial activity was conducted with Gram-negative Escherichia coli (E. coli) and a Gram-positive Staphylococcus aureus (S. aureus) bacteria. The amount of intracellular reactive oxygen species (ROS) produced in the bacteria cultured with the chitosan solution was also detected. The experimental results showed that the chitosan additive did not affect the crystalline phase of calcium silicate cement, but increased the setting time and strength of the cement in a concentration-dependent manner. Within the scope of this study, CTS and QTS solutions with a concentration of not < 1 wt% improved the washout resistance of the control cement, while the COS solutions failed to strengthen the cement. When soaked in simulated body fluid (SBF) for 1 day, all cement samples formed apatite spherules. As the soaking time increased, the diametral tensile strength of all cements decreased and the porosity increased. The assays of MG63 cell function showed lower osteogenic activity of osteoblastic cells grown on the surfaces of the chitosan-incorporated cements in comparison with the control cement without chitosan. At the same 1% concentration, compared with QTS and COS cement, CTS cement had lower cell attachment, proliferation, differentiation, and mineralization. Conversely, the CTS cement resulted in the highest bacteriostasis ratio among the three hybrid cements against two bacteria. The ROS production followed the order of CTS > QTS > COS at the same 1% concentration. In conclusion, calcium silicate cement with 1% QTS may be a viable candidate for bone defect repair in view of anti-washout performance, setting time, antibacterial activity, and osteogenic activity shown in this study.
    URI: http://dx.doi.org/10.1016/j.msec.2020.110727
    https://www.webofscience.com/wos/woscc/full-record/WOS:000527395900099
    https://ir.csmu.edu.tw:8080/handle/310902500/24448
    關聯: MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS ,2020 ,v110
    显示于类别:[中山醫學大學研究成果] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML256检视/开启


    SFX Query

    在CSMUIR中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈