English  |  正體中文  |  简体中文  |  Items with full text/Total items : 17939/22958 (78%)
Visitors : 7388373      Online Users : 114
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://ir.csmu.edu.tw:8080/ir/handle/310902500/24370


    Title: Flavonoids Identification and Pancreatic Beta-Cell Protective Effect of Lotus Seedpod
    Authors: Lee, MS;Chyau, CC;Wang, CP;Wang, TH;Chen, JH;Lin, HH
    Keywords: oxidative stress;pancreatic beta-cell;lotus seedpod;apoptosis;autophagy
    Date: 2020
    Issue Date: 2022-08-09T08:01:11Z (UTC)
    Publisher: MDPI
    Abstract: Oxidative stress is highly associated with the development of diabetes mellitus (DM), especially pancreatic beta-cell injury. Flavonoids derived from plants have caused important attention in the prevention or treatment of DM. Lotus seedpod belongs to a traditional Chinese herbal medicine and has been indicated to possess antioxidant, anti-age, anti-glycative, and hepatoprotective activities. The purpose of this study was to demonstrate the pancreatic beta-cell protective effects of lotus seedpod aqueous extracts (LSE) against oxidative injury. According to HPLC/ESI-MS-MS method, LSE was confirmed to have flavonoids derivatives, especially quercetin-3-glucuronide (Q3G). In vitro, LSE dose-dependently improved the survival and function of rat pancreatic beta-cells (RIN-m5F) from hydrogen peroxide (H2O2)-mediated loss of cell viability, impairment of insulin secretion, and promotion of oxidative stress. LSE showed potential in decreasing the H2O2-induced occurrence of apoptosis. In addition, H2O2-triggered acidic vesicular organelle formation and microtubule-associated protein light chain 3 (LC3)-II upregulation, markers of autophagy, were increased by LSE. Molecular data explored that antiapoptotic and autophagic effects of LSE, comparable to that of Q3G, might receptively be mediated via phospho-Bcl-2-associated death promoter (p-Bad)/B-cell lymphoma 2 (Bcl-2) and class III phosphatidylinositol-3 kinase (PI3K)/LC3-II signal pathway. In vivo, LSE improved the DM symptoms and pancreatic cell injury better than metformin, a drug that is routinely prescribed to treat DM. These data implied that LSE induces the autophagic signaling, leading to protect beta-cells from oxidative stress-related apoptosis and injury.
    URI: http://dx.doi.org/10.3390/antiox9080658
    https://www.webofscience.com/wos/woscc/full-record/WOS:000564877300001
    https://ir.csmu.edu.tw:8080/handle/310902500/24370
    Relation: ANTIOXIDANTS ,2020 ,v9 ,issue 8
    Appears in Collections:[中山醫學大學研究成果] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML159View/Open


    SFX Query

    All items in CSMUIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback