中山醫學大學機構典藏 CSMUIR:Item 310902500/24093
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 17918/22933 (78%)
造访人次 : 7437631      在线人数 : 65
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.csmu.edu.tw:8080/ir/handle/310902500/24093


    题名: Biomarkers of nucleic acid oxidation ? A summary state-of-the-art
    作者: Chao, MR;Evans, MD;Hu, CW;Ji, YHE;Moller, P;Rossner, P;Cooke, MS
    关键词: Oxidative stress;DNA;RNA;Nucleotide pool;Biomarkers;DNA repair
    日期: 2021
    上传时间: 2022-08-05T09:47:43Z (UTC)
    出版者: ELSEVIER
    ISSN: 2213-2317
    摘要: Oxidatively generated damage to DNA has been implicated in the pathogenesis of a wide variety of diseases. Increasingly, interest is also focusing upon the effects of damage to the other nucleic acids, RNA and the (2?deoxy-)ribonucleotide pools, and evidence is growing that these too may have an important role in disease. LCMS/MS has the ability to provide absolute quantification of specific biomarkers, such as 8-oxo-7,8-dihydro-2?deoxyGuo (8-oxodG), in both nuclear and mitochondrial DNA, and 8-oxoGuo in RNA. However, significant quantities of tissue are needed, limiting its use in human biomonitoring studies. In contrast, the comet assay requires much less material, and as little as 5 ?L of blood may be used, offering a minimally invasive means of assessing oxidative stress in vivo, but this is restricted to nuclear DNA damage only. Urine is an ideal matrix in which to non-invasively study nucleic acid-derived biomarkers of oxidative stress, and considerable progress has been made towards robustly validating these measurements, not least through the efforts of the European Standards Committee on Urinary (DNA) Lesion Analysis. For urine, LC-MS/MS is considered the gold standard approach, and although there have been improvements to the ELISA methodology, this is largely limited to 8oxodG. Emerging DNA adductomics approaches, which either comprehensively assess the totality of adducts in DNA, or map DNA damage across the nuclear and mitochondrial genomes, offer the potential to considerably advance our understanding of the mechanistic role of oxidatively damaged nucleic acids in disease.
    URI: http://dx.doi.org/10.1016/j.redox.2021.101872
    https://www.webofscience.com/wos/woscc/full-record/WOS:000643849500006
    https://ir.csmu.edu.tw:8080/handle/310902500/24093
    關聯: REDOX BIOLOGY ,2021,v42
    显示于类别:[中山醫學大學研究成果] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML278检视/开启


    SFX Query

    在CSMUIR中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈