English  |  正體中文  |  简体中文  |  Items with full text/Total items : 17939/22958 (78%)
Visitors : 7383158      Online Users : 113
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://ir.csmu.edu.tw:8080/ir/handle/310902500/24093


    Title: Biomarkers of nucleic acid oxidation ? A summary state-of-the-art
    Authors: Chao, MR;Evans, MD;Hu, CW;Ji, YHE;Moller, P;Rossner, P;Cooke, MS
    Keywords: Oxidative stress;DNA;RNA;Nucleotide pool;Biomarkers;DNA repair
    Date: 2021
    Issue Date: 2022-08-05T09:47:43Z (UTC)
    Publisher: ELSEVIER
    ISSN: 2213-2317
    Abstract: Oxidatively generated damage to DNA has been implicated in the pathogenesis of a wide variety of diseases. Increasingly, interest is also focusing upon the effects of damage to the other nucleic acids, RNA and the (2?deoxy-)ribonucleotide pools, and evidence is growing that these too may have an important role in disease. LCMS/MS has the ability to provide absolute quantification of specific biomarkers, such as 8-oxo-7,8-dihydro-2?deoxyGuo (8-oxodG), in both nuclear and mitochondrial DNA, and 8-oxoGuo in RNA. However, significant quantities of tissue are needed, limiting its use in human biomonitoring studies. In contrast, the comet assay requires much less material, and as little as 5 ?L of blood may be used, offering a minimally invasive means of assessing oxidative stress in vivo, but this is restricted to nuclear DNA damage only. Urine is an ideal matrix in which to non-invasively study nucleic acid-derived biomarkers of oxidative stress, and considerable progress has been made towards robustly validating these measurements, not least through the efforts of the European Standards Committee on Urinary (DNA) Lesion Analysis. For urine, LC-MS/MS is considered the gold standard approach, and although there have been improvements to the ELISA methodology, this is largely limited to 8oxodG. Emerging DNA adductomics approaches, which either comprehensively assess the totality of adducts in DNA, or map DNA damage across the nuclear and mitochondrial genomes, offer the potential to considerably advance our understanding of the mechanistic role of oxidatively damaged nucleic acids in disease.
    URI: http://dx.doi.org/10.1016/j.redox.2021.101872
    https://www.webofscience.com/wos/woscc/full-record/WOS:000643849500006
    https://ir.csmu.edu.tw:8080/handle/310902500/24093
    Relation: REDOX BIOLOGY ,2021,v42
    Appears in Collections:[中山醫學大學研究成果] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML265View/Open


    SFX Query

    All items in CSMUIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback