English  |  正體中文  |  简体中文  |  Items with full text/Total items : 17933/22952 (78%)
Visitors : 7333068      Online Users : 404
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://ir.csmu.edu.tw:8080/ir/handle/310902500/21673


    Title: Monocyte Chemoattractant Protein-1, a Possible Biomarker of Multiorgan Failure and Mortality in Ventilator-Associated Pneumonia
    Authors: Yia-Ting Li;Yao-Chen Wang;Hsiang-Lin Lee;Su-Chin Tsao;Min-Chi Lu;Shun-Fa Yang
    Keywords: ventilator-associated pneumonia;Monocyte chemoattractant protein-1;organ failure;mortality
    Date: 2019-05-06
    Issue Date: 2021-08-23T01:42:47Z (UTC)
    Publisher: MDPI
    Abstract: Ventilator-associated pneumonia (VAP) leads to increased patients’ mortality and medical expenditure. Monocyte chemoattractant protein-1 (MCP-1) plays a role in the pathogenesis of lung inflammation and infection. Therefore, the plasma concentration of MCP-1 was assessed and correlated with the clinical course in VAP patients. This retrospective observational study recruited 45 healthy volunteers, 12 non-VAP subjects, and 30 VAP patients. The diagnostic criteria for VAP were based on the American Thoracic Society guidelines, and the level of plasma MCP-1 was determined by ELISA. Plasma MCP-1 concentration was significantly elevated in the acute stage in VAP patients when compared with the control (p < 0.0001) and non-VAP patient groups (p = 0.0006). Subsequently, it was remarkably decreased following antibiotic treatment. Moreover, plasma MCP-1 concentration was positively correlated with indices of pulmonary dysfunction, including the lung injury score (p = 0.02) and the oxygenation index (p = 0.02). When patients with VAP developed adult respiratory distress syndrome (ARDS), their plasma MCP-1 concentrations were significantly higher than those of patients who did not develop ARDS (p = 0.04). Moreover, plasma MCP-1 concentration was highly correlated with organ failure scores, including simplified acute physiology score II (SAPS II, p < 0.0001), sequential organ failure assessment score (SOFA, p < 0.0001), organ dysfunctions and/or infection (ODIN, p < 0.0001), predisposition, insult response and organ dysfunction (PIRO, p = 0.005), and immunodeficiency, blood pressure, multilobular infiltrates on chest radiograph, platelets and hospitalization 10 days before onset of VAP (IBMP-10, p = 0.004). Our results demonstrate that plasma MCP-1 is an excellent marker for recognizing VAP when the cut-off level is set to 347.18 ng/mL (area under the curve (AUC) = 0.936, 95% CI = 0.863–0.977). In conclusion, MCP-1 not only could be a biological marker related to pulmonary dysfunction, organ failure, and mortality in patients with VAP, but also could be used for early recognition of VAP.
    URI: https://ir.csmu.edu.tw:8080/handle/310902500/21673
    Relation: Int J Mol Sci . 2019 May 6
    Appears in Collections:[醫學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    ijms-20-02218.pdf3763KbAdobe PDF255View/Open


    SFX Query

    All items in CSMUIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback