English  |  正體中文  |  简体中文  |  Items with full text/Total items : 17901/22917 (78%)
Visitors : 7613999      Online Users : 268
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://ir.csmu.edu.tw:8080/ir/handle/310902500/20267


    Title: The expression and significance of insulin-like growth factor-1 receptor and its pathway on breast cancer stem/progenitors
    Authors: Chang, Wen-Wei
    Lin, Ruey-Jen
    Yu, John
    Chang, Wen-Ying
    Fu, Chiung-Hui
    Lai, Alan Chuan-Ying
    Yu, Jyh-Cherng
    Yu, Alice L
    Keywords: Breast Cancer;Rapamycin;Perifosine;ALDH Activity;BC0244 Cell
    Date: 2013
    Issue Date: 2019-07-17T07:12:46Z (UTC)
    Publisher: Breast Cancer Research
    ISSN: 1465-542X
    Abstract: Introduction
    Dysregulation of the insulin-like growth factor-1 receptor (IGF-1R)/phosphatidylinositol-3-kinase (PI3K)/Akt pathway was shown to correlate with breast cancer disease progression. Cancer stem cells are a subpopulation within cancer cells that participate in tumor initiation, radio/chemoresistance and metastasis. In breast cancer, breast cancer stem cells (BCSCs) were identified as CD24-CD44+ cells or cells with high intracellular aldehyde dehydrogenase activity (ALDH+). Elucidation of the role of IGF-1R in BCSCs is crucial to the design of breast cancer therapies targeting BCSCs.

    Methods
    IGF-1R expression in BCSCs and noncancer stem cells sorted from xenografts of human primary breast cancers was examined by fluorescence-activated cell sorting (FACS), western blot analysis and immunoprecipitation. The role of IGF-1R in BCSCs was assessed by IGF-1R blockade with chemical inhibitor and gene silencing. Involvement of PI3K/Akt/mammalian target of rapamycin (mTOR) as the downstream pathway was studied by their phosphorylation status upon IGF-1R inhibition and the effects of chemical inhibitors of these signaling molecules on BCSCs. We also studied 16 clinical specimens of breast cancer for the expression of phosphor-Akt in the BCSCs by FACS.

    Results
    Expression of phosphorylated IGF-1R was greater in BCSCs than in non-BCSCs from xenografts of human breast cancer, which were supported by western blot and immunoprecipitation experiments. The sorted IGF-1R-expressing cells displayed features of cancer stem/progenitors such as mammosphere formation in vitro and tumorigenicity in vivo, both of which were suppressed by knockdown of IGF-1R. A specific inhibitor of the IGF-1R, picropodophyllin suppressed phospho-AktSer473 and preferentially decreased ALDH+ BCSC populations of human breast cancer cells. Furthermore, picropodophyllin inhibited the capacity of CD24-CD44+ BCSCs to undergo the epithelial-mesenchymal transition process with downregulation of mesenchymal markers. Inhibitors of signal molecules downstream of IGF-1R including PI3K/Akt/mTOR also reduced the ALDH+ population of breast cancer cells. Furthermore, the mTOR inhibitor, rapamycin, suppressed BCSCs in vitro and in vivo.

    Conclusion
    Our data support the notion that IGF-1R is a marker of stemness, and IGF-1R and its downstream PI3K/Akt/mTOR pathway are attractive targets for therapy directed against breast cancer stem/progenitors.
    URI: https://ir.csmu.edu.tw:8080/ir/handle/310902500/20267
    Relation: Breast Cancer Research, 15, R39
    Appears in Collections:[生物醫學科學學系暨碩士班] 期刊論文

    Files in This Item:

    File Description SizeFormat
    Chang2013_Article_TheExpressionAndSignificanceOf.pdf2342KbAdobe PDF76View/Open


    SFX Query

    All items in CSMUIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback