中山醫學大學機構典藏 CSMUIR:Item 310902500/18049
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 17918/22933 (78%)
造访人次 : 7429825      在线人数 : 48
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.csmu.edu.tw:8080/ir/handle/310902500/18049


    题名: Oxidative modifications of proteins by sodium arsenite in human umbilical vein endothelial cells
    作者: Lii, C.-K.;Lin, A.-H.;Lee, S.-L.;Chen, H.-W.;Wang, T.-S.
    日期: 2011
    上传时间: 2017-08-01T08:17:36Z (UTC)
    摘要: Epidemiologic studies have demonstrated that chronic arsenic exposure is associated with the incidence of chronic diseases. This association is partly related to the increase in reactive oxygen species (ROS) overload and protein oxidation that result from arsenic exposure. In this study, we intended to identify proteins susceptible to oxidative carbonylation by sodium arsenite and the impact of carbonylation on the function of these proteins in human umbilical vein endothelial cells (HUVECs). The 2,4-dinitrophenylhydrazine (DNPH) dot-blot assay revealed that arsenite (0-50 μM) dose-dependently increased protein carbonylation. Consistent with these findings, the cellular ROS level as measured by 2',7'-dichlorofluorescein diacetate (DCHF-DA) assay was increased in cells exposed to arsenite. By two-dimensional gel electrophoresis and matrix assist laser desorption ionization time of flight mass spectrometry (MALDI-TOF/MS), one glycolytic enzyme, enolase-α, two cytoskeleton proteins, fascin (F-actin associated protein) and vimentin, and two protein quality control proteins, HSC70 (heat-shock cognate protein 70), and PDIA3 (protein disulfide isomerase family A, member 3) were identified to be arsenic-sensitive carbonlyated proteins. Accompanied by carbonylation, enolase-α activity was dose-dependently decreased and the F-actin filament network was disturbed. Taken together, our results suggest that arsenite exposure results in the generation of carbonylated proteins, and the resultant changes in energy metabolism and in the cytoskeletal network may partly lead to cell damage. © 2010 Wiley Periodicals, Inc.
    URI: https://ir.csmu.edu.tw:8080/ir/handle/310902500/18049
    http://dx.doi.org/10.1002/tox.20572
    關聯: Environmental Toxicology 26, 459-471
    显示于类别:[生物醫學科學學系暨碩士班] 期刊論文

    文件中的档案:

    没有与此文件相关的档案.



    SFX Query

    在CSMUIR中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈