English  |  正體中文  |  简体中文  |  Items with full text/Total items : 17939/22958 (78%)
Visitors : 7377850      Online Users : 190
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://ir.csmu.edu.tw:8080/ir/handle/310902500/15974


    Title: Simultaneous determination of Δ9-tetrahydrocannabinol and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol in oral fluid using isotope dilution liquid chromatography tandem mass spectrometry
    Authors: PD, Lee
    YJ, Chang
    KL, Lin
    YZ, Chang
    Contributors: 中山醫學大學
    Keywords: Forensics;Toxicology;Clinical;Biomedical analysis;Mass spectrometry;Inductively coupled plasma mass spectrometry
    Date: 2011
    Issue Date: 2016-09-07T06:43:43Z (UTC)
    ISSN: 1618-2642
    Abstract: The detection and confirmation of cannabinoids in oral fluid are important in forensic toxicology. Currently, the presence of Δ(9)-tetrahydrocannabinol (THC) is used for the detection of cannabis in oral fluid. A low concentration of 11-nor-9-carboxy-Δ(9)-tetrahydrocannabinol (THC-COOH) is found in oral fluid, which suggested a convenient and low-sensitivity confirmation assay can be used in a routine forensic laboratory. In this study, a highly sensitive isotope dilution liquid chromatography-tandem mass spectrometry method following dansylation was successfully developed for simultaneous determination of THC and THC-COOH in oral fluid. The dansylated derivatives dramatically demonstrated and enhanced the sensitivity of THC and THC-COOH. To avoid signal influenced by the matrix, a 5-min liquid chromatography gradient program was evaluated and optimized, which reduced the sample diffusion and caused sharp peaks (less than 12 s) and thus helped to achieve detection at a low level. The sensitivity, accuracy, and precision were also evaluated, and high quantitative accuracy and precision were obtained. The limit of quantitation of this approach was 25 pg/mL for THC and 10 pg/mL for THC-COOH in oral fluid. Finally, the method was successfully applied to eight suspected cannabis users. Among them, in six oral fluid samples THC-COOH was determined at a concentration from 13.1 to 47.2 pg/mL.
    URI: http://dx.doi.org/10.1007/s00216-011-5439-8
    https://ir.csmu.edu.tw:8080/ir/handle/310902500/15974
    Relation: Anal Bioanal Chem. 2012 Jan;402(2):851-9
    Appears in Collections:[醫學檢驗暨生物技術學系暨碩士班] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML343View/Open


    SFX Query

    All items in CSMUIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback