English  |  正體中文  |  简体中文  |  Items with full text/Total items : 17933/22952 (78%)
Visitors : 7346652      Online Users : 290
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://ir.csmu.edu.tw:8080/ir/handle/310902500/11938


    Title: Quantification of urinary N-acetyl-S- (propionamide)cysteine using an on-line clean-up system coupled with liquid chromatography/tandem mass spectrometry.
    Authors: Li CM;Hu CW;Wu KY
    Contributors: 中山醫學大學
    Keywords: acrylamide;N-acetyl-S-(propionamide)cysteine;biomarker;liquid chromatography/tandem mass spectrometry
    Date: 2005-04
    Issue Date: 2015-08-05T05:18:46Z (UTC)
    Abstract: Acrylamide has been reported to be present in high-temperature processed foods and normal processed food intake could lead to significant acrylamide exposure. Acrylamide in vivo can be conjugated with glutathione in the presence of glutathione transferase. This conjugation product is further metabolized and excreted as N-acetyl-S-(propionamide)cysteine (NASPC) in the urine. NASPC could be considered a biomarker for acrylamide exposure. The objective of this study was to develop a highly specific, rapid and sensitive method to quantify urinary NASPC, serving as a biomarker for acrylamide exposure assessment. Isotope-labeled [13C3]NASPC was successfully synthesized and used as an internal standard. This urine mixture was directly analyzed using a newly developed liquid chromatographic/tandem mass spectrometric method coupled with an on-line clean-up system. The detection limit for this method was estimated as < 5 microg l(-1)(0.4 pmol) on-column. The method was applied to measure the urinary level of NASPC in 70 apparently health subjects. The results showed that the NASPC urinary level was highly associated with smoking. Smokers had a significantly higher urinary NASPC level (135 +/- 88 microg g(-1) creatinine) than non-smokers (76 +/- 30 microg g(-1) creatinine). A highly sensitive and selective LC/MS/MS isotope dilution method was successfully established. With an on-line clean-up system, this system is capable of routine high-throughput analysis and accurate quantitation of NASPC in urine. This could be a useful tool for health surveillance for acrylamide exposure in a population for future study.
    URI: https://ir.csmu.edu.tw:8080/ir/handle/310902500/11938
    Relation: J Mass Spectrom. 2005 Apr;40(4):511-5.
    Appears in Collections:[公共衛生學系暨碩士班] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML269View/Open


    SFX Query

    All items in CSMUIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback