English  |  正體中文  |  简体中文  |  Items with full text/Total items : 17939/22958 (78%)
Visitors : 7388839      Online Users : 127
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://ir.csmu.edu.tw:8080/ir/handle/310902500/11331


    Title: Effects of a bacterial lipid byproduct on human pulp fibroblasts in vitro.
    Authors: Ho, YC
    Chang, YC
    Contributors: 中山醫學大學
    http://dx.doi.org/10.1016/j.joen.2006.12.022
    Date: 2007
    Issue Date: 2015-07-15T10:21:05Z (UTC)
    ISSN: 0099-2399
    Abstract: Butyrate, a short chain fatty acid, is a metabolic lipid byproduct of various root canal pathogens, such as Porphyromonas endodontalis. However, little is known about the effects of butyrate on cultured human pulp fibroblasts. H33258 fluorescence, flow cytometry, and protein synthesis assays were used to investigate the pathobiologic effects of butyrate on cultured human pulp fibroblasts. Butyrate exhibited cytotoxic effects on human pulp fibroblasts in a concentration-dependent manner (p < 0.05). The addition of butyrate resulted in G2/M phase arrest (p < 0.05). Butyrate also inhibited protein synthesis in a dose-dependent manner (p < 0.05). To determine whether glutathione (GSH) levels were important in the cytotoxicity of butyrate, we pretreated cells with the GSH precursor, 2-oxothiazolidine-4-carboxylic acid (OTZ), to boost thiol levels, or buthionine sulfoximine (BSO) to deplete GSH. The addition of OTZ acted as a protective effect on the butyrate-induced cytotoxicity (p < 0.05). In contrast, the addition of BSO enhanced the butyrate-induced cytotoxicity (p < 0.05). These results indicate that butyrate is cytotoxic to human pulp fibroblasts by inhibiting cell growth, cell-cycle kinetics, and protein synthesis. These inhibitory effects were associated with intracellular GSH levels.
    URI: https://ir.csmu.edu.tw:8080/ir/handle/310902500/11331
    Relation: J Endod. 2007 Apr;33(4):437-41. Epub 2007 Feb 22.
    Appears in Collections:[牙醫學系暨碩士班] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html期刊論文0KbHTML324View/Open


    SFX Query

    All items in CSMUIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback