English  |  正體中文  |  简体中文  |  Items with full text/Total items : 17918/22933 (78%)
Visitors : 7428624      Online Users : 42
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://ir.csmu.edu.tw:8080/ir/handle/310902500/11119


    Title: Using calcium silicate to regulate the physicochemical and biological properties when using β-tricalcium phosphate as bone cement.
    Authors: Kao, CT
    TH, Huang
    YJ, Chen
    CJ, Hung
    CC, Lin
    Shie, MY
    Contributors: 中山醫學大學
    Date: 2014
    Issue Date: 2015-07-10T05:32:52Z (UTC)
    ISSN: 0928-4931
    Abstract: β-Tricalcium phosphate (β-TCP) is an osteoconductive material. For this research we have combined it with a low degradation calcium silicate (CS) to enhance its bioactive and osteostimulative properties. To check its effectiveness, a series of β-TCP/CS composites with different ratios were prepared to make new bioactive and biodegradable biocomposites for bone repair. Regarding the formation of bone-like apatite, the diametral tensile strength as well as the ion release and weight loss of composites were compared both before and after immersions in simulated body fluid (SBF). In addition, we also examined the behavior of human dental pulp cells (hDPCs) cultured on β-TCP/CS composites. The results show that the apatite deposition ability of the β-TCP/CS composites improves as the CS content is increased. For composites with more than a 60% CS content, the samples become completely covered by a dense bone-like apatite layer. At the end of the immersion period, weight losses of 24%, 32%, 34%, 38%, 41%, and 45% were observed for the composites containing 0%, 20%, 40%, 80%, 80% and 100% β-TCP cements, respectively. In addition, the antibacterial activity of CS/β-TCP composite improves as the CS-content is increased. In vitro cell experiments show that the CS-rich composites promote human dental pulp cell (hDPC) proliferation and differentiation. However, when the CS quantity in the composite is less than 60%, the quantity of cells and osteogenesis protein of hDPCs is stimulated by Si released from the β-TCP/CS composites. The degradation of β-TCP and the osteogenesis of CS give strong reason to believe that these calcium-based composite cements will prove to be effective bone repair materials.
    URI: https://ir.csmu.edu.tw:8080/ir/handle/310902500/11119
    http://dx.doi.org/10.1016/j.msec.2014.06.030
    Relation: Mater Sci Eng C Mater Biol Appl. 2014 Oct;43:126-34.
    Appears in Collections:[牙醫學系暨碩士班] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html期刊論文0KbHTML448View/Open


    SFX Query

    All items in CSMUIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback