English  |  正體中文  |  简体中文  |  Items with full text/Total items : 17938/22957 (78%)
Visitors : 7394001      Online Users : 192
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://ir.csmu.edu.tw:8080/ir/handle/310902500/11001


    Title: Inhibition of Cell Growth and Induction of Apoptosis by Antrodia camphorata in HER-2/neu-Overexpressing Breast Cancer Cells through the Induction of ROS, Depletion of HER-2/neu, and Disruption of the PI3K/Akt Signaling Pathway
    Authors: Lee, Chuan-Chen
    Yang, Hsin-Ling
    Way, Tzong-Der
    Kumar, K.J.Senthil
    Juan, Ying-Chen
    Cho, Hsin-Ju
    Lin, Kai-Yuan
    Hsu, Li-Sung
    Chen, Ssu-Ching
    Hseu, You-Cheng
    Contributors: 中山醫學大學
    Date: 2012
    Issue Date: 2015-07-02T09:39:52Z (UTC)
    ISSN: 1741-427X
    Abstract: Previously, we demonstrated that a submerged fermentation culture of Antrodia camphorata (AC) promotes cell-cycle arrest and apoptosis in human estrogen receptor-positive/negative breast cancer cells. However, whether AC is effective against HER-2/neu-overexpressing breast cancers has not been thoroughly elucidated. In the present study, we showed that AC exhibited a significant cytotoxic effect against HER-2/neu-overexpressing MDA-MB-453 and BT-474 cells. Immunoblot analysis demonstrated that HER-2/neu and their tyrosine phosphorylation were inhibited by AC in a dose-dependent manner. An increase in intracellular reactive oxygen species (ROS) was observed in AC-treated cells, whereas antioxidant N-acetylcysteine (NAC) significantly prevented AC induced HER-2/neu depletion and cell death, which directly indicates that AC-induced HER-2/neu depletion and cell death was mediated by ROS generation. Also, AC significantly downregulated the expression of cyclin D1, cyclin E, and CDK4 followed by the suppression of PI3K/Akt, and their downstream effectors GSK-3β and β-catenin. Notably, AC-treatment induced apoptotic cell death, which was associated with sub-G1 accumulation, DNA fragmentation, mitochondrial dysfunction, cytochrome c release, caspase-3/-9 activation, PARP degradation, and Bcl-2/Bax dysregulation. Assays for colony formation also confirmed the growth-inhibitory effects of AC. This is the first report confirming the anticancer activity of this potentially beneficial mushroom against human HER-2/neu-overexpressing breast cancers.
    URI: https://ir.csmu.edu.tw:8080/ir/handle/310902500/11001
    http://dx.doi.org/10.1155/2012/702857
    Relation: Evidence-Based Complementary and Alternative Medicine Volume 2012 (2012), Article ID 702857, 15 pages
    Appears in Collections:[生化微生物免疫研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html期刊論文0KbHTML273View/Open


    SFX Query

    All items in CSMUIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback