English  |  正體中文  |  简体中文  |  Items with full text/Total items : 17918/22933 (78%)
Visitors : 7426479      Online Users : 311
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://ir.csmu.edu.tw:8080/ir/handle/310902500/10991


    Title: Rubus idaeus L Inhibits Invasion Potential of Human A549 Lung Cancer Cells by Suppression Epithelial-to-Mesenchymal Transition and Akt Pathway In Vitro and Reduces Tumor Growth In Vivo.
    Authors: Chu, SC
    YS, Hsieh
    LS, Hsu
    KS, Chen
    CC, Chiang
    Chen, PN
    Contributors: 中山醫學大學附設醫院
    Date: 2013
    Issue Date: 2015-07-02T09:08:03Z (UTC)
    ISSN: 1534-7354
    Abstract: The metastasis of lung cancer is the most prevalent cause of patient death. Various treatment strategies have targeted the prevention of the occurrence of metastasis. The epithelial-mesenchymal transition (EMT) in lung cancer cells is considered a prerequisite to acquire the invasive/migratory phenotype and to subsequently achieve metastasis. However, the effects of Rubus idaeus on cancer invasion and the EMT of the human lung carcinoma remain unclear. In this article, we test the hypothesis that R idaeus ethyl acetate (RIAE) possesses an antimetastatic effect and reverses the EMT potential of human lung A549 cells. We extract the raspberry R idaeus with methanol (RIME), chloroform (RICE), ethyl acetate (RIAE), n-butanol (RIBE), and water (RIWE). The RIAE treatment obviously inhibits the invasive (P < .001), motility (P < .001), spreading, and migratory potential (P < .001) of highly metastatic human lung cancer A549 cells. The zymography and promoter luciferase analysis reveals that RIAE decreases the proteinase and transcription activities of MMP-2 and u-PA. Molecular analyses show that RIAE increases the E-cadherin level that is mainly localized at the cellular membrane. This result was also verified through confocal analyses. RIAE also induces the upregulation of an epithelial marker, such as α-catenin, and decreases mesenchymal markers, such as snail-1 and N-cadherin, that promote cell invasion and metastasis. RIAE inhibits MMP-2 and u-PA by attenuating the NF-κB and p-Akt expression. The inhibition of RIAE on the growth of A549 cells in vivo was also verified using a cancer cell xenograft nude mice model. Our results show the anti-invasive/antitumor effects of RIAE and associated mechanisms, which suggest that RIAE should be further tested in clinically relevant models to exploit its potential benefits against metastatic lung cancer cells.
    URI: https://ir.csmu.edu.tw:8080/ir/handle/310902500/10991
    http://dx.doi.org/10.1177/1534735413510559
    Relation: Integr Cancer Ther. 2013 Dec 10;13(3):259-273.
    Appears in Collections:[生化微生物免疫研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html期刊論文0KbHTML350View/Open


    SFX Query

    All items in CSMUIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback