English  |  正體中文  |  简体中文  |  Items with full text/Total items : 17918/22933 (78%)
Visitors : 7420131      Online Users : 255
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://ir.csmu.edu.tw:8080/ir/handle/310902500/10637


    Title: A composite graft material containing bone particles and collagen in osteoinduction in mouse.
    Authors: Tsai, CH
    Chou, MY
    Jonas, M
    Tien, YT
    Chi, EY
    Contributors: 中山醫學大學
    Date: 2002
    Issue Date: 2015-04-13T08:59:46Z (UTC)
    Abstract: Demineralized allogenic bone matrices (DABM) and demineralized freeze-dried bone allograft (DFDBA) have been successfully used as bone-graft materials in the treatment of acquired and congenital cranio-maxillofacial defects and in some orthopedic surgery. However, these bone-graft "powders" have many shortcomings. For example, placement of particulate graft material in a hemorrhaging site can result in inadequacies or inaccurate attachment as well as loss of the graft materials. To minimize the inadequacies of powderlike graft materials, xenogenic collagen isolated from human tendon, skin, or bone was added to the bone-graft particles to form a composite spongelike implant. This material is commercially available and consists of 60% collagen and 40% DFDBA (DynaGraft, GenSci Co., Irvine, CA). The goal of this study was to evaluate the characteristics of composite graft implants in the mineralization process in an animal model in comparison with DFDBA powder and pure collagen. Seventy-two Swiss Webster mice were divided into three groups: an experimental group implanted with DynaGraft, two comparison groups implanted with either DFDBA or collagen only. All the graft materials were surgically implanted and inserted into the left thigh muscle. Mice were humanely killed at 1, 2, 3, 4, 6, 8, and 12 weeks. Then the muscle tissues in the vicinity of the implants were excised and processed for histology. Paraffin sections were stained with hematoxylin and eosin (H&E), the Von Kossa method, and Masson's trichrome. Some selected specimens were processed for transmission electron microscopic observation. After 1 week of implantation, the DynaGraft group showed calcium deposition on the collagen material and on the periphery of the DFDBA particles. Increased calcification and bone-forming cells were observed at 4-6 weeks. After 8 weeks, the implant formed a calcified nodule and only heavily mineralized connective tissue was observed at the implanted site. The group implanted with DFDBA powder showed calcification around the particulates. The collagen-sponge control group revealed no calcification or bone formation during the period of implantation. The light microscopic findings were confirmed by electron microscopy. Quantitative radiographic density DynaGraft and DFDBA graft followed sequentially over a period 120 days. It was concluded that a higher rate of calcification and bone formation was produced in the composite graft implant compared to the DFDBA implant. The composite graft material (DynaGraft), which contains both collagen and DFDBA, proved to be more effective for bone formation than particle components alone.
    Copyright 2002 John Wiley & Sons, Inc.
    URI: https://ir.csmu.edu.tw:8080/ir/handle/310902500/10637
    Relation: J Biomed Mater Res. 2002;63(1):65-70.
    Appears in Collections:[牙醫學系暨碩士班] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html報導0KbHTML379View/Open


    SFX Query

    All items in CSMUIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback