中山醫學大學機構典藏 CSMUIR:Item 310902500/10434
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 17918/22933 (78%)
造访人次 : 7429613      在线人数 : 58
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.csmu.edu.tw:8080/ir/handle/310902500/10434


    题名: Evaluation of subcortical grey matter abnormalities in patients with MRI-negative cortical epilepsy determined through structural and tensor magnetic resonance imaging
    作者: Syu-Jyun Peng
    Tomor Harnod
    Jang-Zern Tsai
    Ming-Dou Ker
    Jun-Chern Chiou
    Herming Chiueh
    Chung-Yu Wu
    Yue-Loong Hsin
    贡献者: 中山醫學大學
    关键词: Subcortical grey matter;Neocortical epilepsy;Volumetry;Diffusion tensor imaging
    日期: 2014-05-14
    上传时间: 2015-03-11T04:27:04Z (UTC)
    摘要: Background
    Although many studies have found abnormalities in subcortical grey matter (GM) in patients with temporal lobe epilepsy or generalised epilepsies, few studies have examined subcortical GM in focal neocortical seizures. Using structural and tensor magnetic resonance imaging (MRI), we evaluated subcortical GM from patients with extratemporal lobe epilepsy without visible lesion on MRI. Our aims were to determine whether there are structural abnormalities in these patients and to correlate the extent of any observed structural changes with clinical characteristics of disease in these patients.

    Methods
    Twenty-four people with epilepsy and 29 age-matched normal subjects were imaged with high-resolution structural and diffusion tensor MR scans. The patients were characterised clinically by normal brain MRI scans and seizures that originated in the neocortex and evolved to secondarily generalised convulsions. We first used whole brain voxel-based morphometry (VBM) to detect density changes in subcortical GM. Volumetric data, values of mean diffusivity (MD) and fractional anisotropy (FA) for seven subcortical GM structures (hippocampus, caudate nucleus, putamen, globus pallidus, nucleus accumbens, thalamus and amygdala) were obtained using a model-based segmentation and registration tool. Differences in the volumes and diffusion parameters between patients and controls and correlations with the early onset and progression of epilepsy were estimated.

    Results
    Reduced volumes and altered diffusion parameters of subcortical GM were universally observed in patients in the subcortical regions studied. In the patient-control group comparison of VBM, the right putamen, bilateral nucleus accumbens and right caudate nucleus of epileptic patients exhibited a significantly decreased density Segregated volumetry and diffusion assessment of subcortical GM showed apparent atrophy of the left caudate nucleus, left amygdala and right putamen; reduced FA values for the bilateral nucleus accumbens; and elevated MD values for the left thalamus, right hippocampus and right globus pallidus A decreased volume of the nucleus accumbens consistently related to an early onset of disease. The duration of disease contributed to the shrinkage of the left thalamus.

    Conclusions
    Patients with neocortical seizures and secondary generalisation had smaller volumes and microstructural anomalies in subcortical GM regions. Subcortical GM atrophy is relevant to the early onset and progression of epilepsy.
    URI: https://ir.csmu.edu.tw:8080/ir/handle/310902500/10434
    關聯: BMC Neurology 2014, 14:104
    显示于类别:[醫學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    25.pdf期刊2413KbAdobe PDF551检视/开启


    SFX Query

    在CSMUIR中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈