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Abstract: Emerging roles of exosomes in the pathogenesis of major blindness-threatening diseases,
such as age-related macular degeneration, glaucoma, and corneal dystrophy, were discovered by
aqueous humor analysis. A new diagnostic method using cellulose-based devices and microfluidic
chip techniques for the isolation of exosomes from aqueous humor is less cumbersome and saves
time. This method will enable more investigations for aqueous humor analysis in the future.
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1. Introduction

Exosomes, the extracellular membrane vesicles secreted via cell exocytosis, were first discovered in
1983 by biochemists Pan and Johnstone while researching transferrin receptors during the maturation
of sheep reticulocytes [1]. However, the roles of exosomes in physiology and disease were not fully
elucidated until recent decades.

Exosomes are approximately 30- to 120-nm-sized particles that contain lipids, proteins, and small
fragments of RNA or microRNA [2]. During circulation, they may be endocytosed into another
host cell, where they induce RNA integration, which contributes to intercellular signal transduction.
Exosomes have been shown to play an important role in several diseases, such as cancer metastasis
and immune disorders, which both heavily rely on intercellular communication [3].

The formation and release of exosomes is part of the normal endosomal delivery system present
in almost all cells of the human body. Acidification occurs in the early phase of endosome formation.
The acidification process sorts endosomal contents into three separate pathways. One pathway recycles
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contents back to the cellular surface. Another pathway transfers contents to lysosomes for degradation.
The last pathway forms late endosomes containing many small intra-luminal vesicles (ILVs). When this
occurs, the late endosome is called a multivesicular body (MVB). MVBs can be degraded after fusing
with the lysosome. Otherwise, MVBs can be transferred to the cell surface, where they fuse with the
plasma membrane and release their cellular contents into the extracellular space. These particular late
endosomes are termed exosomes [4].

Exosomes can easily be extracted from small volumes of bodily fluids, including serum, urine,
cerebrospinal fluid, and aqueous humor. Because of their presence in nearly all cells of the human
body and their recently identified roles in the pathophysiology of several diseases, exosomes are being
increasingly investigated for their potential contributions to in vivo diagnostics (IVD) [5–8].

2. Role of Exosomes in Ophthalmological Diseases

Currently, glaucoma and age-related macular degeneration (AMD) are the second and third
leading causes of blindness worldwide after cataracts. According to 2010 WHO global data on visual
impairment, glaucoma and AMD account for a combined 13% (AMD: 5%, glaucoma: 8%) of all cases
of blindness [9]. Research has shown that the intraocular exosome-related pathway plays a significant
role in the pathophysiology of both diseases [10,11]. By investigating intraocular exosomes, it might
be possible to develop a new diagnostic approach using aqueous humor sampling that better manages
these two globally dominant blindness-causing diseases.

3. Role of Exosomes in Aqueous Humor Homeostasis and Glaucoma

The aqueous humor is a clear fluid circulating between the posterior and anterior chambers of the
human eye that maintains intraocular pressure (IOP), among other things. The aqueous humor is a
critical component in the pathophysiology of glaucoma development. Aqueous humor is produced
from plasma via the epithelium of the ciliary body pars plicata. Circulating aqueous humor flows
around the lens, through the pupil, and into the anterior chamber. There are two main routes of
aqueous outflow into systemic circulation: trabecular meshwork, which accounts for approximately
90% of flow; and uveoscleral outflow, which accounts for the remaining 10%. Exosomes in aqueous
humor may contribute to intercellular communication in the eye [12]. The ciliary body releases
exosomes and presents translational signals to the trabecular meshwork using encapsulated RNA
fragments [13]. Furthermore, exosomes are also secreted from the trabecular meshwork and travel
back to the ciliary body. Through this mutual signal transduction and modification, homeostasis of
aqueous humor, i.e., normal IOP, is maintained (Figure 1a,b).

In addition to delivering vital translational signals, exosomes also manage aqueous humor via
cellular contents. Myocilin, a protein mainly secreted in its soluble form in trabecular cell-conditioned
media and fresh eye samples, is believed to significantly influence the disease progression of glaucoma
(Figure 1b) [9,10,13]. Myocilin is abundant in aqueous humor and is bound to exosomes. Myocilin
serves as a cell debris scavenger within the trabecular meshwork to keep it clean. Mutations in
myo-C, the gene encoding myocilin, were identified in some cases of primary open angle glaucoma
(POAG) [14] (Figure 1c). POAG patients are prone to developing glaucoma at an early age with
markedly elevated IOP.

Mutated myo-C may disrupt other protein-protein interactions and interfere with aqueous humor
homeostasis [15]. A lack of myocilin causes obstruction of the trabecular meshwork and aqueous
humor cannot be drained out, which eventually results in elevated IOP [16]. The role of myocilin in
the exosome pathway should be clarified in future research.

Extraordinarily elevated IOP damages the nerve fiber layer of the optic disc resulting in
irreversible visual field loss. Glaucoma is known as a silent vision killer because no specific biomarkers
can be applied as a reliable predictive factor. To date, only IOP measurement, visual field tests,
and optical coherence tomography (OCT) for disc retinal nerve fiber thickness can be used for
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diagnosing glaucoma [17]. However, none of these approaches are sufficiently accurate, and they are
time-consuming and highly instrument-dependent.

Nanomaterials 2018, 8, x  3 of 7 

 

diagnosing glaucoma [17]. However, none of these approaches are sufficiently accurate, and they are 
time-consuming and highly instrument-dependent. 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic diagram of exosomes in ocular disease. (a) Exosomes (Red dot) are 80~ to 100-
nm-wide vesicles that can be released from the retina and diffused anteriorly into the aqueous humor 
(red arrow). Exosomes can also be released from the ciliary body to the trabecular meshwork (Blue 
arrow). (b) In normal aqueous flow conditions, exosomes are released from the ciliary body (CB) to 
the trabecular meshwork (TM) and send signals to change resistance in the trabecular meshwork, 
which controls aqueous outflow (blue arrows). Then, trabecular meshwork (TM) may release 
exosomes back to the ciliary body (red arrows), which produces aqueous humor. In this mechanism, 
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patients with primary open angle glaucoma, Myocilin-related exosomes (blue dots) are released from 
the ciliary body. Myocilin mutations disrupt aqueous humor homeostasis. Thus, more debris will 
block the trabecular meshwork and cause an elevation in intraocular pressure, which may cause 
glaucomatous optic neuropathy and future loss of visual acuity. (d) Exosomes (Red dot) released from 
the retinal pigment epithelium (RPE) to surrounding RPE cells may cause further autophagy of retinal 
cells and lead to the formation of drusen, which largely contributes to the formation of age-related 
macular degeneration. Exosomes released by RPE can be diffused into the anterior chamber (Red 
arrows). 
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Figure 1. Schematic diagram of exosomes in ocular disease. (a) Exosomes (Red dot) are 80 to
100-nm-wide vesicles that can be released from the retina and diffused anteriorly into the aqueous
humor (red arrow). Exosomes can also be released from the ciliary body to the trabecular meshwork
(Blue arrow). (b) In normal aqueous flow conditions, exosomes are released from the ciliary body (CB)
to the trabecular meshwork (TM) and send signals to change resistance in the trabecular meshwork,
which controls aqueous outflow (blue arrows). Then, trabecular meshwork (TM) may release exosomes
back to the ciliary body (red arrows), which produces aqueous humor. In this mechanism, aqueous
humor homeostasis can be maintained, which contributes to intraocular pressure. (c) In patients with
primary open angle glaucoma, Myocilin-related exosomes (blue dots) are released from the ciliary
body. Myocilin mutations disrupt aqueous humor homeostasis. Thus, more debris will block the
trabecular meshwork and cause an elevation in intraocular pressure, which may cause glaucomatous
optic neuropathy and future loss of visual acuity. (d) Exosomes (Red dot) released from the retinal
pigment epithelium (RPE) to surrounding RPE cells may cause further autophagy of retinal cells and
lead to the formation of drusen, which largely contributes to the formation of age-related macular
degeneration. Exosomes released by RPE can be diffused into the anterior chamber (Red arrows).

Topical steroids are widely used as anti-inflammatory medication in ophthalmology. Approximately
20% of patients with long-term steroid use develop glaucoma. It has been reported that steroid use results
in glaucoma due to induced fluctuations in aqueous exosome levels [13,14]. Thus, periodic monitoring of
steroid-using patients seems crucial to their treatment.

In summary, our increased understanding of how exosomes contribute to the development of
glaucoma prompts consideration of in vitro exosome measurement from aqueous humor as a feasible
and effective alternative to existing diagnostic methods. This methodology is effective, easy to perform,
and can be applied to primary diagnosis as well as monitoring for adverse effects of long-term
therapeutic steroid use.

4. Role of Exosomes in Age-Related Macular Degeneration

The retina is the most delicate structure in the human eye. It is a light-sensitive neural tissue
that acts like film in a camera. The retina consists of three basic cells type: photoreceptors, neuronal
cells, and glial cells. These cells construct the ten layers of the retina. The retinal layers begin with the
inner-most nerve fiber layer, progress through the inner plexiform layer, and end in the outer-most
layer of retinal pigment epithelium (RPE) and Burch membrane, which is firmly attached to the
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choroid. RPE cells have tight junctional complexes that act as an outer blood-retinal barrier, and they
prevent extracellular fluid from leaking into the subretinal space while actively pumping water out.
The macula lies in the center of the retina and is the region of sharpest visual acuity. The macula
contains multiple layers of ganglion cells while the peripheral retina contains only a single layer [18].

Age-related macular degeneration (AMD), a progressive chronic disease of the central retina, is
the leading cause of blindness among populations aged 65 years or older in industrialized nations.
According to a global systematic literature review from The Lancet Global Health in 2014, AMD occurs
in 8.69% of the global population [19]. Furthermore, 196 million people are projected to contract the
disease by 2020, and this number is expected to increase to 288 million in 2040 as the average life
expectancy slowly increases.

Patients with early-stage AMD are typically asymptomatic. Yellowish drusen, which is essentially
cellular trash depositions, is observable beneath the retinal pigment epithelium in early-stage AMD.
This drusen interferes with the normal retinal blood supply, which leads to photoreceptor death.
Rapid deterioration of central vision often presents with an increased loss of photoreceptors and
neovascularization over the macular area. Macular neovascularization is often referred to as “wet” AMD,
and a lack of neovascularization is referred to as “dry” AMD. People with wet AMD complain of deceased
visual acuity, a positive central scotoma, image distortion, and changes in observed object size [20].

Current treatment for AMD is limited because the causal molecular pathways are not understood.
Nutrition adjustment and corrective lenses are used as treatments in early cases. Laser coagulation,
photodynamic therapy, anti-vascular endothelial growth factor (anti-VEGF) administration, and visual
rehabilitation are used in advanced cases [9,21,22].

Exosomes are believed to play a crucial role in intercellular communication, especially in AMD.
Exosomes can diffuse anteriorly from the vitreous to the aqueous humor and can be detected through
many methods (Figure 1a). Similar to their role in the development of glaucoma, they also play
a role in AMD development. Previous research found that upregulation of intercellular protein
release via exosomes was observed in drusen formation, which is believed to be relevant to the
pathophysiology of AMD [21]. Furthermore, current studies have discovered exosome release from
retinal pigment epithelium (RPE) cell lines in vitro and noted that associated exosome activity is altered
in AMD cases [7,22]. It is speculated that these alterations, which may be caused by genetic mutations,
contribute to AMD by affecting communication between the RPE and retinal photoreceptors [23]
(Figure 1d). It was also suggested that gradual autophagy of the surrounding RPE was due to
intercellular communication through exosomes. Isolation of exosomes in patients with retinopathy
using aqueous sampling proved to be less cumbersome and less volume-demanding than other
methods [24,25].

5. Perspectives—Current Research Limitations and Potential Breakthrough Using In Vitro
Diagnostic Tools

The distribution and concentration of many biological factors, such as cytokines, pathogens,
and exosomes, are more different in the eye than in other bodily fluids. These materials are scarcer
in the eye because of the blood-retinal barrier. For this reason, the exosomes isolated from aqueous
humor are mostly secreted by intraocular tissues. This feature increases the effectiveness and feasibility
of aqueous humor analyses to investigate and diagnose eye diseases [23–26].

We duly note that current techniques for exosome isolation from bodily fluid require repetitive
ultra-centrifugations, which contribute to the time and fluid volume requirements. Because only
100–200 µL of aqueous humor can be obtained from a single collection, exosome isolation from this
material has some obstacles to overcome.

Recently, several reports have been published regarding a method for exosome isolation
from aqueous humor using a paper-based immunoaffinity assay, a scanning electron microscope,
and a micro-fluidic RNA detecting chip (Agilent 2100 bioanalyzer) [27,28]. A detailed protocol for
this method is shown in Figure 2. This novel isolation method has some advantages in aqueous
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humor analysis over previous methods: it requires only 25 µL of sample and eliminates the repetitive
ultra-centrifugations, which reduces the analysis time from at least 5 h to only 1 h. Exosomes isolated
with this functionalized paper surface can be further characterized by scanning electron microscopy
(Figure 3). In the literature review, one article mentioned a simple sandwich immunofluorescence assay
(sIFA) microfluidic device for aqueous humor detection [29]. However, this PDMS-based microfluidic
device demanded delicate design and fabrication of UV-masking to create the microstructure. Thus,
these protocols of fabrication made the PDMS-based microfluidic device for aqueous humor detection
cumbersome. Besides, the advantages of paper microfluidics are well established. Modification of
paper with silane is published and shows practically relevant limit of detections(LODs) with high
expandability and adaptability [30].
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Figure 2. Schematic protocol of the paper-based assay for isolation of exosomes within aqueous
humor. (A) The surface of the paper sheet test zone was activated with a brief treatment with
oxygen plasma and then conjugated to capture molecules using 3-mercaptopropyl trimethoxysilane,
N-γ-maleimidobutyryloxy succinimide ester, and NeutrAvidin. (B) Then, we washed and blocked
the test zone, added 25 µL of aqueous humor, and finished with a wash. Exosomes isolated on this
functionalized paper surface could be further characterized by scanning electron microscopy (SEM),
transcriptome analysis (by microfluidic chip), and ELISA assays.
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Figure 3. Scanning electron microscopy image of exosomes in aqueous humor samples captured on
microfluidic filter paper. Isolated CD63+ exosomes in aqueous humor from patients with age-related
macular degenerations. White scale bar = 200 micrometers.
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Using microfluidic paper for exosome isolation from aqueous humor for diagnostics can be
applied in the future for personalized medicine [31]. The therapeutic response to certain treatments,
status of disease, or subtype of disease can be monitored more easily with this paper-based
microfluidic platform.

For intraocular samples, such as aqueous humor, related point-of-care diagnostic methods have
not yet been developed due to technical limitations and insufficient understanding of the molecular
disease pathways. Further study of the clinical value of exosome isolation for diagnosis and treatment
of glaucoma and AMD, as well as implementation of new and novel exosome isolation techniques,
will broaden the scope and impact of in vitro investigation for understanding pathways underlying
these two major causes of blindness.
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