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A B S T R A C T

Ethnopharmacological relevance: Salvia miltiorrhiza Bunge, as known as Danshen, has used for the prevention
and treatment of cardiovascular diseases clinically and anti-cancer activities. Salvianolic acid A (SAA), one of the
most abundant ingredients, hydrophilic derivatives of Salvia miltiorrhiza Bunge, exerts a variety of pharmaco-
logical actions, such as anti-oxidative, anti-inflammatory and anti-cancer activities. However, the impact of SAA
on nasopharyngeal carcinoma (NPC) invasion and metastasis remains unexplored.
Aim of the study: To investigate the potential of SAA to prevent migration and invasion on NPC cell.
Materials and methods: MTT assay and Boyden chamber assay were performed to determine cell proliferation,
migration and invasion abilities, respectively. The activity and protein expression of matrix metalloproteinase-2
(MMP-2) were determined by gelatin zymography and western blotting.
Results: Here, we showed that SAA considerably suppressed the migrative and invasive activity of human NPC
cells but not rendered cytotoxicity. In SAA-treated NPC cells, the activity and expression of matrix metallo-
proteinase-2 (MMP-2), a key regulator of cancer cell invasion, were reduced. Additionally, the presence of high
concentrations of SAA dramatically abolished the activation of focal adhesion kinase (FAK) and moderately
inhibited the phosphorylation of Src and ERK in NPC cells.
Conclusions: Our results demonstrated that SAA inhibited the migration and invasion of NPC cells, accompanied
by downregulation of MMP-2 and inactivation of FAK, Src, and ERK pathways. These findings indicate a use-
fulness of SAA on restraining NPC invasion and metastasis.

1. Introduction

Nasopharyngeal carcinoma (NPC), a malignancy that originates
from the epithelial lining of the nasopharynx, is common in Southeast
Asia, with an annual incidence of ~30 per 100,000 subjects (Wei and
Sham, 2005). In addition to genetic susceptibility and infection with

Epstein-Barr virus (EBV), the etiology of NPC involves a variety of en-
vironmental risk factors associated with the unique cultural practice
and life style of different ethnic populations (for example, smoking and
consumption of preserved food) (Chua et al., 2016). These etiological
parameters across distinct geographical regions in part account for the
heterogeneity of global incidence, histologic types, and treatment
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response for this disease. Currently, the treatment of NPC has improved
significantly, with radiotherapy alone (for early-stage disease) or
combined chemo-radiotherapy (for locally advanced tumors) being the
mainstay of therapy for NPC. However, treatment failure, largely in the
form of local recurrence or regional/distant metastases, is still present
in approximately 20% of patients following primary therapy (Au et al.,
2018; Cao et al., 2013). Recurrent and metastatic NPC are often re-
fractory to advanced therapy and associated with high mortality (Razak
et al., 2010). Therefore, a better understanding of the molecular me-
chanisms underlying NPC metastasis is essential for providing insights
into the development of novel therapeutic approaches, ultimately
ameliorating the prognosis.

Tumor metastasis, the major cause of deaths due to malignancies, is
a multistage process that requires cancer cells to escape from the pri-
mary location, survive in the circulation, and grow at distant sites
(Coghlin and Murray, 2010; Hsiao et al., 2019; Su et al., 2017). Me-
tastasis of NPC is regulated by diverse cellular and organismic me-
chanisms rendered by both cancer and non-neoplastic cells within the
tumor microenvironment (Chambers et al., 2002; Joyce and Pollard,
2009; Reymond et al., 2013). These include activation of signaling
pathways, regulation of cell-cell and cell-matrix interaction, extra-
cellular matrix (ECM) remodeling by matrix metalloproteinases
(MMPs), cytoskeleton reorganization, elevated mobility, escape from
cell apoptosis, epithelial-mesenchymal transition (EMT), and angio-
genesis (Chien et al., 2013; Lee et al., 2019a, 2019b; Su et al., 2017).

In Traditional Chinese Medicine (TCM), Salvia miltiorrhiza Bunge
(Danshen), belonging to the Labiatae family of flowering plants, is a
widely used for the prevention and treatment of cardiovascular and
endocrine diseases clinically (Wang et al., 2018) and anti-cancer ac-
tivities (Chen et al., 2014). Moreover, Lin et al., also validated the in
vivo protective effect of Salvia miltiorrhiza Bunge in the different stage
of colon cancer patients (Lin et al., 2017). A number of active in-
gredients for S. miltiorrhiza, either water-soluble or lipid-soluble, has
been isolated, including salvianolic acid A (SAA), salvianolic acid B and
salvianolic acid C and so on (Liu et al., 2007). Among them, salvianolic
acid A, one of the major compound of S. miltiorrhiza, exerts a variety of
pharmacological actions, such as anti-oxidative (Zhang et al., 2014a),
anti-inflammatory (Oh et al., 2011), anti-diabetic (Qiang et al., 2015),
and anti-thrombotic effects (Fan et al., 2010). The potential effect of
SAA for cancer treatment has been proposed (Ma et al., 2019). Speci-
fically, SAA resensitized breast cancer cells to chemotherapy via tar-
geting the expression of an actin-binding protein, transgelin 2 (Cai
et al., 2014; Zheng et al., 2015). In addition, SAA was shown to sup-
press cancer cell proliferation by acting as an inhibitor of the en-
dothelin-1 receptor (Zhang et al., 2016). These findings point out a
functional role of SAA in promoting cancer cell apoptosis. Yet, the
impact of SAA on NPC metastasis remains poorly understood. There-
fore, the aim of the present study is to test the activity of SAA on af-
fecting the migration and invasiveness of NPC cells and to explore the
molecular mechanisms associated with SAA-regulated NPC cell moti-
lity.

2. Materials and methods

2.1. NPC cell culture and reagents

Human NPC cell line, HONE-1, was purchased from the Food
Industry Research and Development Institute (Hsinchu, Taiwan). NPC-
39, established from a patient with NPC (Liao et al., 1998), was given
by Dr. MK Chen, Department of Otolaryngology, Changhua Christian
Hospital, Changhua, Taiwan. Cells were propagated in RPMI-1640
medium containing 10% FBS and maintained at 37 °C in a humidified
atmosphere of 5% CO2. Salvianolic acid A (SAA), of HPLC grade with
≥98% purity, was obtained from Sigma-Aldrich (St. Louis, MO, USA)
and prepared in sterile distilled water.

2.2. Measurement of cell viability

The cytotoxicity of SAA is determined by assessing cell viability
using a microculture tetrazolium (MTT) colorimetric assay as pre-
viously described (Lu et al., 2018). Different concentrations of SAA
were added into the 24-well plates and incubated for 24 h. The mea-
surement of visible cells was based on the production of formazan
following solubilization with isopropanol, which was estimated spec-
trophotometrically at 563 nm in a spectrophotometer (DU640,
Beckman Instruments, Fullerton, CA).

2.3. Wound healing assay

8 × 105 cells were seeded in 6-cm plates for 24 h. Prior to creating a
scratch with a yellow, cells were serum starved overnight. After cell
debris was removed by washing with PBS, cells were maintained in a
condition medium containing 0.5% FBS and indicated concentrations of
SAA. Cell culture was photographed at 0, 12, and 24 h by using an
Olympus CKX41 phase contrast microscope (Olympus Corporation,
Tokyo, Japan) at 100 × magnification to determine the width of the
remaining wound area relative to the initial wound width.

2.4. Cell migration and invasion assay

We employed a modified Boyden chamber assay without and with
10 μL of Matrigel (25 mg/50 mL; BD Biosciences, MA) coating to assess
cell migration and invasion, respectively, as described previously (Lu
et al., 2018). In brief, cells were pretreated with indicated concentra-
tions of SAA for 24 h and then seeded on the 8-μm-pore size poly-
carbonate membrane filter at 104 cells/well in serum-free media and
the bottom chamber contained a standard culture medium (10 % fetal
bovine serum). Cells were allowed to migrate or invade for 24 h and
counted under an Olympus CKX41 microscope (Olympus Corporation,
Tokyo, Japan).

2.5. Gelatin zymography

The gelatinolytic activities of matrix metalloproteinase-2 (MMP-2)
in culture medium were measured by using gelatin zymography pro-
tease assays as described previously (Lin et al., 2014). Conditioned
media of an appropriate volume were subjected to 0.1% gelatin (Sigma-
Aldrich, St. Louis, MO) and 8% SDS-PAGE. After gel electrophoresis,
gels were washed with 2.5% Triton X-100, incubated in reaction buffer
(40 mM Tris-HCl, pH 8.0; 10 mM CaCl2 and 0.01% (w/v) NaN3) for
24 h at 37 °C, and then stained with Coomassie Brilliant Blue R-250
(Sigma-Aldrich, St. Louis, MO, USA).

2.6. Immunoblotting

Total protein lysates (20 μg) of cell cultures were subjected to SDS-
PAGE and transferred to Immobilon PVDF membranes (Millipore,
Bedford, Massachusetts, USA). Antibodies against the following pro-
teins were used for detection: Anti-p38a (1:1,000 dilution) and anti-β-
actin Ab5 (1:5,000 dilution) from BD Biosciences (Bedford, MA, USA);
Anti-MMP-2 (1:1,000 dilution), Anti-phospho-FAK (Tyr925) (1:1,000
dilution), Anti-FAK (1:1,000 dilution), Anti-phospho-Src (1:1,000 di-
lution), Anti-Src (1:1,000 dilution), Anti-phospho-p38 (Thr180/
Tyr182) (1:1,000 dilution), anti-p44/42 (ERK1/2) (1:1,000 dilution),
anti-phospho-p44/42 (ERK1/2) (1:1,000 dilution), anti-SAPK/JNK
(1:1,000 dilution), anti-phospho-SAPK/JNK (Thr183/Tyr185) (1:1,000
dilution) antibodies from Cell Signaling Technology (Danvers, MA,
USA); HRP-conjugated secondary antibodies (1:5,000 dilution) (Dako
Corporation, Carpinteria, CA, USA). Densitometric analysis of blots was
performed using ImageJ software.
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2.7. Quantitative PCR

Total RNA was extracted using an RNeasy Mini Kit according to the
manufacturer's instructions (QIAGEN, Valencia, CA, USA). Each real-
time PCR reaction contained 0.5 ng/μL of cDNA and 400 nM of each
primer in a 25-μL reaction volume. The reaction was initiated at 94 °C
for 1.5 min, followed by 40 two-step amplification cycles consisting of
15 s of denaturation at 95 °C and 45 s of annealing/elongation at 60 °C
in the Applied Biosystems StepOne Real-time polymerase chain reaction
(PCR) system (Applied Biosystems, Foster City, CA, USA). Assays were
performed in triplicate against three independent preparations of
cDNA. For each reaction, a threshold cycle was observed in the ex-
ponential phase of amplification, and the quantification of relative
expression levels was achieved using standard curves for both MMP-2
(Hs00234422_m1; FAM-GCAGGGCGGCGGTCACAGCTACTTC) and a
constitutively expressed gene, GAPDH (Hs99999905_m1; FAM-GGCG
CCTGGTCACCAGGGCTGCTTT), whose expression changed<1.15-
fold.

2.8. Statistical analysis

Data were shown as means ± standard deviation (SD) of at least
three independent experiments. A P value of< 0.05 was considered
statistically significant by using Student's t-test.

3. Results

3.1. Effect of SAA on NPC cell viability

Suppressive effects of SAA on cell proliferation have been detected
in multiple cancer cell lines (Tang et al., 2017; Zhang et al., 2016;
Zheng et al., 2015). To determine whether SAA is cytotoxic to NPC
cells, NPC-39 and HONE-1 cells were treated with different con-
centrations of SAA, ranging from 0 to 50 μΜ, and examined for cell
viability. Unlike the anti-proliferative responses observed in other
cancer cells, SAA, even at 50 μM, did not alter cell viability of NPC cells
(Fig. 1).

3.2. Effect of SAA on NPC cell motility

Next, the impact of SAA on NPC cell mobility was tested by per-
forming an in vitro wound healing assay and a modified Boyden
chamber assay. We found that high concentrations of SAA (at 25 and
50 μM) rendered suppressive effects on cell motility at 12 h post-
treatment in both HONE-1 and NPC-39 cells without altering the cell
proliferation (Fig. 2A & B). Moreover, at 24 h post-treatment, SAA
consistently inhibited the motility, migration, and invasion of both

HONE-1 and NPC-39 cells in a dose-dependent manner (Fig. 2C–D).
These results reveal a usefulness of SAA on restricting NPC invasion and
metastasis.

3.3. SAA suppresses the activity and expression of MMP-2 in NPC

Since matrix metalloproteinase-2 (MMP-2) is an important de-
terminant of cancer cell invasion through remodeling extracellular
matrices (Xu et al., 2005), the potential involvement of MMP-2 in SAA-
mediated inhibition of NPC invasion was then investigated. To address
this, conditioned media of SAA-treated NPC cells were collected and
applied to a gelatin zymography assay for assessing the activities of
MMP-2. We noted a significant decrease in gelatin digestion upon SAA
treatment in the culture media of both HONE-1 and NPC-39 cells
(Fig. 3A), indicating that SAA efficiently suppresses the activities and
extracellular levels of MMP-2 in NPC. Further, the intracellular levels of
MMP-2 in SAA-treated NPC cells were examined at the protein and RNA
level. We observed that SAA consistently downregulated the protein
(Fig. 3B) and RNA (Fig. 3C) of MMP-2 in both cell lines tested. These
results suggest that SAA is capable of reducing the activity and ex-
pression of a key player of cell invasion, MMP-2, in NPC.

3.4. SAA inhibits FAK, Src, and ERK pathways in NPC

Diverse intracellular signaling pathways, such as integrin (Yue
et al., 2012) and MAPK (Boyd et al., 2005; Yang et al., 2019; Yeh et al.,
2019) signaling, are known to regulate MMP-2 expression and play a
vital role in cancer invasion and metastasis. We, next, tested whether
SAA mediates the activation of focal adhesion kinase (FAK), Src, ERK,
JNK, and p38 in NPC cells. We found that high concentrations of SAA
almost abolished the activation of FAK and moderately inhibited the
phosphorylation of Src in both HONE-1 and NPC-39 cells (Fig. 4A). In
term of MAPK, SAA, at high concentrations, decreased the activation of
ERK, whereas it did not affect that of JNK and p38 (Fig. 4B). To further
investigate whether the suppression of the cell migration by SAA was
mainly caused by the inhibition of the MEK/ERK1/2 signaling pathway,
the MEK inhibitor (U0126) and ERK1/2 activator (t-BHQ) were used to
confirm the mechanism in NPC-39 cells. As shown in Fig. 5A, the cell
migratory ability was suppressed when the cells were treated with SAA
only. The combination treatment of U0126 (5 μM) and SAA (25 μM)
resulted in the intensive inhibition of the migratory ability in NPC-
39 cells. Otherwise, the ERK1/2 activator (t-BHQ) significantly in-
creased the cell migratory abilities of NPC-39 cells and also reversed the
SAA-mediated suppression of the migratory ability in NPC-39 cells
(Fig. 5B).

Fig. 1. SAA is not cytotoxic to human NPC cells. HONE-1 and NPC-39 cells were treated with various concentrations (0–50 μM) of SAA for 24 h and then examined
for cell viability. The values represented the means ± SD from at least three independent experiments.
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4. Discussion

Although current standard management of NPC has obtained fa-
vorable outcomes in patients with early-stage diseases, metastases re-
main a huge challenge for the treatment of NPC. Thus, alternative
therapeutic approaches are needed to improve patients’ survival and
quality of life. A large body of evidence has shown that medicinal herbs
and their derivatives are beneficial for combating malignancies, when
used in combination with conventional therapeutics (Yin et al., 2013).
Here, we demonstrated that SAA, one of the most abundant water-so-
luble derivatives of S. miltiorrhiza, exerted suppressive effects on NPC
invasion and migration. Further characterization of the underlying
molecular mechanisms revealed that the inhibition of NPC motility by
SAA was accompanied by reducing MMP-2 activity and expression and
hampering activation of FAK, Src, and ERK signaling pathways. Our

findings, for the first time, indicate a usefulness of SAA on restraining
NPC invasion and metastasis.

Numerous studies have proposed diverse anti-cancer effects of SAA
on treating various types of cancer (Ma et al., 2019). In multidrug-re-
sistant breast cancer cells, SAA promoted programmed cell death by
increasing the activity of caspase-3 (Wang et al., 2015) and inhibited
the invasion responses by modulating the expression of many junctional
proteins, such as E-cadherin and N-cadherin (Zheng et al., 2015). Here,
we found that SAA considerably suppressed the migrative and invasive
activity of human NPC cells but exhibited no effect on cell apoptosis.
Notably, we observed that the inhibition of NPC invasion by SAA was
accompanied by inactivation of Src and FAK (Fig. 4A). Mounting evi-
dence from in vitro and in vivo experiments has placed these two
nonreceptor protein tyrosine kinases at the heart of E-cadherin reg-
ulation and the crosstalk between integrins and cadherins (Serrels et al.,

Fig. 2. SAA suppresses the motility, migration, and invasion of NPC cells. (A) Confluent monolayers of HONE-1 and NPC-39 cells were scratched and treated
with indicated concentrations of SAA. Wound closure was monitored at 12 and 24 h post-treatment. The right panel is quantification of cell motility. (B) HONE-1 and
NPC-39 cells were treated with various concentrations (0–50 μM) of SAA for 12 and 24 h and then examined for cell proliferation. (C–D) HONE-1 and NPC-39 cells
were pretreated with indicated concentrations of SAA for 24 h. Cell migration (C) and invasion (D) were assayed at 24 h after seeding in a modified Boyden chamber
without and with Matrigel coating, respectively. Quantitative data are shown in the right panel. *, p < 0.05 as compared with SAA-untreated controls.
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Fig. 3. SAA inhibits the activity and expression of MMP-2 in NPC cells. HONE-1 and NPC-39 cells were treated with SAA (0–50 μM) for 24 h. Conditioned media
were subjected to gelatin zymography for analyzing the activity of MMP-2 (A). Cell lysates and total RNA were prepared for determining the levels of MMP-2 protein
(B) and RNA (C). Densitometric analyses of gelatin zymography and immunoblots were perfomed by the ImageJ software. The expression of MMP-2 protein and RNA
were normalized to the levels of β-actin protein and GAPDH RNA, respectively. *, p < 0.05, compared with the untreated control.
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2011). These findings indicate a potential involvement of a regulatory
crosstalk between the Src/FAK signaling axis and cadherins in SAA-
mediated inhibition of NPC invasion. In addition to adhesion signaling,
treatment of SAA in cancer was shown to orchestrate different MAPK
pathways. Unlike interrupting JNK pathway in lung cancer (Li et al.,
2002), we noted that SAA decreased activation of ERK but not that of
p38 and JNK pathway in NPC (Fig. 4B). Furthermore, SAA has been
demonstrated to decrease cell migration in vivo by modulating MMP-9
(Jiang et al., 2013; Zhang et al., 2014b). In the present study, we
showed that SAA suppressed the activity and expression of another
gelatinase, MMP-2. Consistently, down-regulation of both MMP-9 and
MMP-2 in oral cancer by salvianolic acids have been reported (Fang
et al., 2018; Yang et al., 2011). The results from our and others’ in-
vestigations implicate the use of salvianolic acids as a promising
modality against the angiogenic and metastatic potential of head and
neck cancers via targeting MMP-2/9.

Our results reveal a suppressive effect of SAA on NPC invasion;
nevertheless, extra work is needed to address several limitations of this
study. First, even though we showed the inhibition of NPC invasion by
SAA in the culture of human NPC cell lines, the capacity of this sal-
vianolic acid may be altered after ingestion and absorption in the
human body. Additional in vivo experiments are required to verify its
clinical value for NPC treatment. Second, both cell lines used in this
study are Epstein-Barr virus (EBV)-negative, yet the major histologic
types of NPC (nonkeratinizing carcinoma and undifferentiated carci-
noma) are predominantly EBV-positive (Wei and Sham, 2005). Acqui-
sition of EBV-positive NPC cell lines for testing the impact of SAA will
improve the clinical relevance.

Taken together, our data for the first time demonstrated that SAA
suppressed the migration and invasion of NPC cells, accompanied by
downregulation of MMP-2 and inactivation of FAK, Src, and ERK
pathways (Fig. 5C). These findings provide novel insights into the use of

Fig. 4. Effect of SAA on regulating the adhesion (A) and MAPK (B) signaling pathways. HONE-1 and NPC-39 cells were treated with SAA (0–50 μM) for 24 h,
and cell lysates were subjected to Western blot analysis to analyze the phosphorylation of FAK and Src for adhesion signaling (A), as well as ERK, JNK, and p38 for
MAPK pathways (B). Densitometric analyses of kinase phosphorylation were conducted by ImageJ. Blots are representative of three independent experiments.
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SAA on restraining NPC invasion and metastasis.
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