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ABSTRACT: Enantiomers of cis,cis-decahydro-2-
naphthyl-N-n-butylcarbamate show stereo-specific
inhibition for acetylcholinesterase and butyryl-
cholinesterase. For both inhibition reaction,
(2S,4aR,8aS)-cis,cis-decahydro-2-naphthyl-N-n- butyl-
carbamate is more potent than (2R,4aS,8aR)-cis,cis-
decahydro-2-naphthyl-N-n-butylcarbamate. Optically
pure (2S,4aR,8aS)-(−)- and (2R,4aS,8aR)-(+)-cis,cis-
decahydro-2-naphthols are resolved by the porcine
pancreatic lipase-catalyzed acetylation of decahydro-2-
naphthols with vinyl acetate. Absolute configurations
and the enantiomeric excess values of (2S,4aR,8aS)-(−)-
and (2R,4aS,8aR)-(+)-cis,cis-decahydro-2-naphthols
are determined from the 19F NMR spectra of
their Mosher’s ester derivatives. We fail to resolve
(2S,4aR,8aR)- and (2R,4aS,8aS)-trans,cis-decahydro-2-
naphthols from the porcine pancreatic lipase-catalyzed
acetylation of decahydro-2-naphthols with vinyl ac-
etate. C© 2011 Wiley Periodicals, Inc. J Biochem Mol
Toxicol 25:330–339, 2011; View this article online at
wileyonlinelibrary.com. DOI 10:1002/jbt.20394
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INTRODUCTION

Two forms of cholinesterase coexist ubiquitously
throughout the body, acetylcholinesterase (AChE, EC
3.1.1.7) [1–3] and butyrylcholinesterase (BChE, EC
3.1.1.8) [4–7], and although highly homologous, >65%,
they are products of different genes on chromosomes
7 and 3 in humans, respectively. Both subtype unse-
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lective cholinesterase and human AChE-selective in-
hibitors have been used in Alzheimer’s disease to am-
plify the action of acetylcholine at remaining cholin-
ergic synapses within the Alzheimer’s disease brain.
The X-ray crystal structures of Torpedo californica AChE
have revealed that the enzyme contains a catalytic triad
similar to that present in other serine hydrolases. It has
also revealed that this triad is located near the bottom
of a deep and narrow gorge about 20 Å in depth [2].
The X-ray crystal structure of human BChE has been
reported [4,5,7]. T. californica AChE and human BChE
have a common catalytic triad, Ser–His–Glu. The ac-
tive sites of both enzymes are located at the bottom of
a cavity and act as nucleophiles to attack the carbonyl
groups of substrates or pseudosubstrate inhibitors.

Carbamate inhibitors, such as Alzheimer’s disease
drug Rivastigmine (Exelon) (Figure 1) and aryl car-
bamates, are characterized as the pseudosubstrate in-
hibitors of AChE, BChE, cholesterol esterase, and li-
pase [3,8–15]. In the presence of substrate, the kinetic
schemes for pseudosubstrate inhibitions of serine hy-
drolases by carbamate inhibitors have been illustrated
(Figure 2) [8]. These reactions are going on simultane-
ously, with the inhibitor and substrate competing for
the active site of the enzyme. In addition, reactivation
of the enzyme is insignificant when compared to car-
bamylation of the enzyme and therefore the k3 values
can be ignored (k2 � k3). Equation (1) is the solution
of differential equation that describes the set of reac-
tions depicted in Figure 2. In Eq. (1), the kapp values
are first-order rate constants, which are obtained by
Hosie’s method.

kapp = k2[I]/(Ki (1 + [S]/Km) + [I]) (1)

Therefore, the Ki and k2 values are obtained as param-
eters from the nonlinear least squares of curve fittings
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FIGURE 1. Structures of (2S,4aR,8aS)- and (2R,4aS,8aR)-cis,cis-decahydro-2-naphthyl-N-n-butylcarbamate, racemic (±)-trans,cis-decahydro-2-
naphthyl- N-n-butylcarbamate, Rivatigmine, Physostigmine, and Huperzine-A.

of kapp vs. inhibitor concentration ([I]) following Eq. (1).
The bimolecular rate constant, ki = k2/Ki , is defined as
the overall inhibitory potency.

The stereospecificity of AChE plays an impor-
tant role in many Alzheimer’s disease drug such
as Rivastigmine, Physostigmine, and Huperzine-
A (Figure 1). We have reported that AChE
has shown stereo-specific inhibition for stereoiso-
mers of 1,1′-bi-2-naphthyl-di-N-n-butylcarbamate [16]
and exo- and endo-2-norbornyl-N-n-butylcarbamates
[17]. BChE has also shown stereo-specific inhi-
bition by enantiomers of isomalathion [18], exo-
and endo-2-norbornyl-N-n-butylcarbamates [19]. In

this paper, we further synthesized optically pure
(2S,4aR,8aS)- and (2R,4aS,8aR)-cis,cis-decahydro-2-
naphthyl-N-n-carbamates from (2S,4aR,8aS)-(−)- and
(2R,4aS,8aR)-(+)- cis,cis-decahydro-2-naphthols to
probe stereospecificity for both AChE and BChE in-
hibitions (Figure 1).

Optically pure (2S,4aR,8aS)-(−)- and (2R,4aS,
8aR)-(+)- cis,cis-decahydro-2-naphthols have been
resolved from microbial hydrolysis of (±)-cis,cis-
decahydro-2-naphthyl acetate by Bacillus subtilis [20].
For resolution of enantiomers of secondary alco-
hols, lipases (EC 3.1.1.3) have been widely cho-
sen to use because lipases can be applied in
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FIGURE 2. Kinetic scheme for the pseudosubstrate inhibition of bu-
tyrylcholinesterase by carbamate inhibitors in the presence of sub-
strate. E, enzyme; S, substrate butyrylthiocholine; ES, acylenzyme
intermediate; I, carbamate, EI, enzyme-inhibitor tetrahedral inter-
mediate; EI′, carbamyl enzyme intermediate; P, thiocholine from the
substrate reaction; P′, alcohol-leaving groups from the pseudosub-
strate inhibition, Q, carbamic acids.

organic solvent that is very convenient to organic
chemists [21,22]. In this paper, we apply the lipase-
catalyzed stereospecifically acetylation of one of
enantiomers of (2S,4aR,8aS)-(−)- and (2R,4aS,8aR)-
(+)-cis,cis-decahydro-2-naphthols form a mixture of
stereoisomers of decahydro-2-naphthols with vinyl ac-
etate (Figure 3).

MATERIALS AND METHODS

Materials

All chemicals were of the highest grade avail-
able. Silica gel used in liquid chromatography and
thin-layer chromatography plates were obtained from
Merck, Darmstadt, Germany. Horse serum BChE,
butyrylthiocholine, and 5,5′-dithio-bis(2-nitrobenzoic
acid) (DTNB) were obtained from Sigma, St. Louis,
Missouri, USA.

Chemistry

Synthesis

Kinetic Resolution of (2S,4aR,8aS)-(−)- and (2R,4aS,-
8aR)-(+)-cis,cis- decahydro-2-naphthols. To a t-butyl
methyl ether (50 mL) solution of decahydro-2-naphthol
(32.5 mmol.) and vinyl acetate (10 mL), 30 g of porcine
pancreatic lipase were added. The reaction mixture was
shaken at 37◦C at 200 rpm for 72 h. This reaction yielded
(2S,4aR,8aS)-(−)-cis,cis-decahydro-2-naphthyl acetate

(33%) and recovered unreactive (2R,4aS,8aR)-(+)-
cis,cis-decahydro-2-naphthol (35%) and racemic (±)-
trans,cis-decahydro-2-naphthol (30%) (Figure 3a). The
optical purity of (2R,4aS,8aR)-(+)-cis,cis-decahydro-2-
naphthol ([α]25

D = +32.3
◦
) from this resolution was cal-

culated to be 80% [α]25
D = +40.4

◦
from the literature [20].

(2S,4aR,8aS)-(−)-cis,cis-decahydro-2-naphthol was ob-
tained from the basic hydrolysis (0.1 M KOH) of (2S)-
(−)-cis,cis-decahydro-2-naphthyl acetate in ethanol in
99% yield. The optical purity of (2S,4aR,8aS)-(−)-cis,cis-
decahydro-2-naphthol ([α]25

D = −32.7
◦
) from this reso-

lution was calculated to be 81% ([α]25
D = −40.4

◦
from

the literature).
The enantiomeric excess (e.e.) values of

(2R,4aS,8aR)-(+)- and (2S,4aR,8aS)-(−)- cis,cis-
decahydro-2-naphthols from the resolutions were
calculated to be 78% and 80%, respectively, from the
19F NMR spectra of their Mosher’s esters (Figure 3b
and Table 1).

In a NMR tube, the condensation reaction of
(2R,4aS,8aR)-(+)-cis,cis- decahydro-2-naphthol (5 mM)
with the Mosher’s chiral-derivatizing agent (S)-(+)-α-
methoxy-α-trifluoro-methylphenylacetyl chloride [23]
(5 mM) in CDCl3 in the presence of pyridine (5 mM)
at 25◦C for 24 h. The fluorine chemical shifts at
−73.982 and −74.237 ppm with the integration ra-
tio of 89/11 were assigned to be the fluorine atoms
of (2R,4aS,8aR)-and (2S,4aR,8aS)- cis,cis-decahydro-2-
naphthyl-(S)-α-methoxy-α-trifluoromethyl-phenyl ac-
etates, respectively (Figure 3b) [24,25]. Therefore,
the enantiomeric excess of (2R,4aS,8aR)-(+)-cis,cis-
decahydro-2-naphthol from the kinetic resolution by
lipase catalysis (Figure 3b) was calculated to be 78%
from integration of these two peaks (Table 1).

(2S,4aR,8aS) - (−) - cis,cis - decahydro - 2 - naphthol
(5 mM) was condensed with the Mosher’s chiral-
derivatizing agent (S)-(+)-α-methoxy-α-trifluoro-
methylphenylacetyl chloride [23] (5 mM) in CDCl3
in the presence of pyridine (5 mM) at 25◦C for
24 h. The fluorine chemical shifts at −74.024 and
−74.279 ppm with the integration ratio of 10/
90 were assigned to be the fluorine atoms of
(2R,4aS,8aR) - and (2S,4aR,8aS) - cis,cis - decahydro-2-
naphthyl - (S)-α-methoxy-α-rifluoromethylphenyl ac-
etates, respectively. Therefore, the enantiomeric excess

TABLE 1. Enantiomeric Excess and Optical Purity for the Kinetic Resolution of Enantiomers of cis,cis-decahydro-2-Naphthanol
(Figure 1) by Lipase in Organic Solvent

Compound Enantiomeric Excess (%)a Optical Purity (%)b

(2R,4aS,8aR)-(+)-cis,cis-decahydro-2-naphthol 78 80
(2S,4aR,8aS)-(−)-cis,cis-decahydro-2-naphthol 80 81

a Enantiomeric excess (%) was calculated from the ratio of integration of fluorine chemical shifts of their Mosher’s ester derivatives of 19F NMR spectra.
b Optical purity (%) was calculated as 100 × [α]25

D observed/[α]25
D literature.
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FIGURE 3. (a) Kinetic resolution of (2S,4aR,8aS)-(−)- and (2R,4aS,8aR)-(+)-cis,cis-decahydro-2-naphthols from lipase-catalyzed acetylation
of racemic (±)-cis,cis-decahydro-2-naphthol with vinyl acetate and (b) determination of enantiomeric excess and absolute configuration of
(2S,4aR,8aS)-(−)- and (2R,4aS,8aR)-(+)-cis,cis-decahydro-2-naphthols by 19NMR spectra of their Mosher’s ester derivatives. 19F NMR spectra
after the reaction of with S-(+)-α-methoxy-α-trifluoro-methylphenylacetyl chloride in the presence of pyridine in CDCl3. The peaks at −73.982
and −74.237 ppm were assigned to be the fluorine chemical shifts of (2R,4aS,8aR)- and (2S,4aR,8aS)-cis,cis-(S)-α-methoxy-α-trifluoromethyl-
phenylacetates, respectively.
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of (2S,4aR,8aS)-(−)-cis,cis-decahydro-2- naphthol from
the kinetic resolution by lipase catalysis was calculated
to be 80% from integration of these two peaks (Table 1).

(2R,4aS,8aR)-(+)- or (2S,4aR,8aS)-(−)-, or racemic
(±)-cis,cis-decahydro-2-naphthol. 1H NMR (CDCl3)
δ0.80–1.80 (m, 16H, 1,3–8,4a,8a-decahydro-2-naphthyl
Hs), 3.07 (m, 1H, decahydro-2-naphthyl-C(2)H).
13C NMR (CDCl3) δ 22.5 (C-4), 26.2, 26.4
(C-6 and C-7), 30.6, 30.9 (C-5 and C-8), 32.0 (C-
8a), 32.8 (C-3), 34.3, 34.7 (C-1 and C-4a), 74.0 (C-2).
Mass spectra, exact mass: 154.1354; elemental analysis:
calculated for C10H18O: C, 77.87; H, 11.76, found C,
77.78; H, 11.93.

(2S,4aR,8aS)-cis,cis-Decahydro-2-naphthylacetate. 1H
NMR (CDCl3) δ 0.80–1.80 (m, 16H, 1,3–8,4a,8a-
decahydro-2-naphthyl Hs), 2.00 (s, 3H, acetyl methyl),
3.90 (m, 1H, decahydro-2-naphthyl-C(2)H). 13C NMR
(CDCl3) δ 17.7 (acetyl methyl), 22.6 (C-4), 26.3, 26.4 (C-
6 and C-7), 30.5, 30.8 (C-5 and C-8), 32.0 (C-8a), 32.7
(C-3), 34.2, 34.7 (C-1 and C-4a), 70.1 (C-2), 170.9 (acetyl
C=O). Mass spectra, exact mass: 196.1460; elemental
analysis: calculated for C12H20O2: C, 73.43; H, 10.27,
found C, 73.31; H, 10.34.

Synthesis of Racemic trans,cis-, (2R,4aS,8aR)-cis,
cis-, and (2S,4aR,8aS)-cis,cis-decahydro-2-naphthyl-N-
n-butylcarbamates. Racemic trans,cis-, (2R,4aS,8aR)-
cis,cis-, (2S,4aR,8aS)-cis,cis-, and racemic cis,cis-
decahydro-2-naphthyl-N-n-butylcarbamates (Figure 1)
were synthesized from condensation of the correspond-
ing alcohol with n-butyl isocyanate in the presence of
trethylamine in CH2Cl2 for 48 h at 25◦C (70–80% yield).

Racemic (±)-trans,cis-decahydro-2-naphthyl-N-n-
butylcarbamate. 1H NMR (200 MHz, CDCl3) δ0.92
(t, J = 7 Hz, 3H, carbamate ω-CH3), 1.20–2.00 (m, 20H,
carbamate β- and γ-CH2 and decahydro-2-naphthyl
Hs), 3.17 (dt, J = 6 and 7 Hz, 2H, carbamate α-CH2),
3.88 (m, 1H, decahydro-2-naphthyl C(2)-H), 4.53 (br. s,
1H, carbamate NH).

13C NMR (50.3 MHz, CDCl3) δ 13.7 (carbamate ω-
CH3), 19.9 (carbamate β-CH2), 26.5, 22.6, 28.2, 30.3,
32.1, 33.7 (decahydro-2-naphthyl C-3 to C-8), 33.7
(carbamate γ -CH2), 37.2 (decahydro-2-naphthyl C-
9), 37.6 (decahydro-2-naphthyl C-1), 40.6 (decahydro-
2-naphthyl C-10), 42.7 (carbamate α-CH2), 70.4
(decahydro-2-naphthyl C-2), 156.4 (carbamate C=O).

(2R,4aS,8aR)-, (2S,4aR,8aS)-, or Racemic cis,cis-
decahydro-2-naphthyl- N-n-butylcarbamate. 1H NMR
(200 MHz, CDCl3) δ 0.92 (t, J = 7 Hz, 3H, carbamate
ω-CH3), 1.20–2.00 (m, 20H, carbamate β- and γ-CH2
and decahydro-2-naphthyl Hs), 3.15 (dt, J = 6 and 7
Hz, 2H, carbamate α-CH2), 4.56 (m, 1H, decahydro-2-
naphthyl C(2)-H), 4.84 (br. s, 1H, carbamate NH).

13C NMR (50.3 MHz, CDCl3) δ 13.6 (carbamate ω-
CH3), 19.7 (carbamate β-CH2), 26.4, 31.3, 33.0, 33.6,

34.4, 35.2 (decahydro-2-naphthyl C-3 to C-8), 32.0 (car-
bamate γ-CH2), 38.5 (decahydro-2-naphthyl C-1), 40.6
(decahydro-2-naphthyl C-9), 40.9 (carbamate α-CH2),
42.2 (decahydro-2-naphthyl C-10), 73.2 (decahydro-2-
naphthyl C-2), 156.3 (carbamate C=O).

Instrumental Methods

All steady-state kinetic data were obtained from
a UV–visible spectrometer (Agilent 8453) with a cell
holder circulated with a water bath.

Data Reduction and Molecular Modeling

Origin (version 6.0) was used for the linear and
nonlinear least-squares curve fittings. Molecular struc-
tures shown in figures were depicted from the molec-
ular structures after MM-2 energy minimization (min-
imum root mean square gradient was set to be 0.01) by
CS Chem 3D (version 6.0).

AChE and BChE Inhibitions

The inhibition reactions of AChE and BChE were
determined by the Ellman assay [26]. The AChE-
catalyzed hydrolysis of acetylthiocholine (0.1 mM) or
BChE-catalyzed hydrolysis of butyrylthiocholine (0.1
mM) in the presence of 5,5′-dithio-bis(2-nitrobenzoic
acid) (0.1 mM) and inhibitors were followed continu-
ously at 410 nm on a UV–visible spectrometer at 25◦C,
pH 7.1. The Ki and k2 values were parameters obtained
from the nonlinear least squares of curve fittings of the
kapp values vs. inhibition concentration ([I]) plot follow-
ing Eq. (2) (Figure 4 and Tables 2 and 3).

Statistics

Errors of Ki and k2 values (Tables 2 and 3) were
depicted as the errors of parameters from the nonlin-
ear least squares of curve fittings of the kapp values vs.
inhibition concentration ([I]) plot following Eq. (1) by
Origin (version 6.0). Errors of ki values were depicted
as the followings:

Error of ki = (Error of Ki )2 + (Error of k2)2)1/2

RESULTS AND DISCUSSION

(2S,4aR,8aS)-cis,cis-, (2R,4aS,8aR)-cis,cis-, racemic
cis,cis-, and racemic trans,cis-decahydro-2-naphthyl-N-
n-butylcarbamates (Figure 1) were synthesized from

J Biochem Molecular Toxicology DOI 10:1002/jbt
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FIGURE 4. Nonlinear least-squares curve fittings of kapp vs. inhibitor concentration ([I]) plots against Eq. (1) for the pseudosubstrate inhibitions
[8] of (a) AChE and (b) BChE by (2R,4aS,8aR)-cis,cis-decahydro-2-naphthyl- N-n-butylcarbamate. The parameters of the fit were (a) k2 = 0.0167
± 0.00001 s−1, Ki = 2.2 ± 0.6 μM, and R = 0.9972 and (b) k2 = 0.0091 ± 0.0001 s−1, Ki = 2.4 ± 0.5 μM, and R = 0.99828.
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TABLE 2. k2, Ki , and ki Valuesa of the AChE Inhibitions by Stereoisomers of Decahydro-2-naphthyl N-n-butylcarbamates

Inhibitorsb Ki (μM) k2(10−2s−1) ki (103 M−1s−1) Enantioselectivity

rac-(±)-trans,cis 3.5 ± 0.3 0.40 ± 0.04 1.1 ± 0.1 –
(2R,4aS,8aR)-cis,cis- 2.2 ± 0.6 1.67 ± 0.02 8 ± 2 2.4
(2S,4aR,8aS)-cis,cis- 6.0 ± 0.6 2.0 ± 0.2 3.3 ± 0.5 1.0
rac-(±)-cis,cis- 4 ± 1 2.0 ± 0.1 5 ± 1 1.5

a Obtained from the nonlinear least-squares curve fittings of kapp vs. [I] plot against Eq. (1) (Figure 4a).
b (2R,4aS,8aR)-cis,cis-, (2S,4aR,8aS)-cis,cis-, and rac-(±)-cis,cis- stand for (2R,4aS,8aR)-, (2S,4aR,8aS)-, and racemic cis,cis-decahydro-2-naphthyl-N-n-

butylcarbamates. rac-(±)-trans,cis stand for (2R,4aS,8aS)- and (2S,4aR,8aR)-trans,cis-decahydro-2-naphthyl-N-n-butylcarbamates.

the corresponding alcohols to study the stereospeci-
ficity of AChE and BChE inhibitions.

Superimposition of (2S,4aR,8aS)-(−)- and (2R,4a-
S,8aR)-(+)-cis,cis-decahydro -2-naphthols into the
active site of acetyl enzyme suggests that the
decahydro-2-naphthyl ring of (2S,4aR,8aS)-(−)- cis,cis-
decahydro-2-naphthol fits well into the leaving group
binding site of the enzyme and the hydroxyl group
of (2S,4aR,8aS)-(−)- cis,cis-decahydro-2-naphthol is at
the right position to attack the carbonyl carbon of acetyl
enzyme (Figure 5a). On the other hand, the decahydro-
2-naphthyl ring of (2R,4aS,8aR)-(+)-cis,cis-decahydro-
2-naphthol does not fit well into the leaving group
binding site of the enzyme, extending to the entrance
(mouth) of the active site. Thus, the hydroxyl group of
(2R,4aS,8aR)-(+)-cis,cis-decahydro-2-naphthol is away
from the right position to attack the acetyl enzyme.

(2S,4aR,8aS)-cis,cis-, (2R,4aS,8aR)-cis,cis-, racemic
cis,cis-, and racemic trans,cis-decahydro-2-naphthyl-N-
n-butylcarbamates (Figure 1) are all characterized as
pseudosubstrate inhibitors of AChE and BChE (Eq. (1),
Figure 2, Tables 2 and 3) [8–15,17,19,27–30].

For stereospecificity of the AChE inhibition
by enantiomers of cis,cis-decahydro-2- naphthyl-N-
n-butylcarbamates, (2R,4aS,8aR)-cis,cis-isomer is 2.4
times more potent than (2S,4aR,8aS)-cis,cis-isomer
(Table 2). This stereopreference (R > S) is the same
with that for the inhibition by enantiomers of exo-2-
norbornyl-N-n-butylcarbamate but is opposite to that
for the inhibition by enantiomers of endo-2-norbornyl-
N-n-butylcarbamate [17].

Superimposition of both enantiomers of cis,cis-
decahydro-2-naphthyl-N-n- butylcarbamate into the

active site of AChE indicates that the decahydro-2-
naphthyl rings of (2S,4aR,8aS)-cis,cis-isomer is strongly
repulsive with the anionic substrate binding site of
AChE [1–3], suggesting that this unfavorable inter-
action makes (2S,4aR,8aS)-cis,cis-inhibitor less impo-
tent (Figure 5b). On the other hand, the decahydro-
2-naphthyl rings of (2R,4aS,8aR)-cis,cis-inhibitor does
not have such unfavorable repulsions.

Comparison between racemic cis,cis- and racemic
trans,cis-decahydro-2-naphthyl-N-n- butylcarbamates
for AChE inhibition reveals that the former is more po-
tent than the latter (Table 2) probably due to the fact that
the decahydro-2-naphthyl ring of trans,cis-inhibitor is
repulsive to the anionic substrate binding site of the
enzyme and that this repulsion weakens the binding
between trans,cis-inhibitor and the enzyme (Figure 5b).

For stereospecificity of the BChE inhibition
by cis,cis-decahydro-2- naphthyl-N-n-butylcarbamates,
(2R,4aS,8aR)-cis,cis-inhibitor is 2.7 times more potent
than (2S,4aR,8aS)-cis,cis-inhibitor (Table 3).

Superimposition of both the enantiomers of cis,cis-
decahydro-2-naphthyl-N-n- butylcarbamate into the
active site of BChE indicates that the decahydro-2-
naphthyl rings of (2S,4aR,8aS)-cis,cis-isomer is strongly
repulsive with the anionic substrate-binding site of
BChE [4–7], suggesting that this unfavorable inter-
action makes (2S,4aR,8aS)-cis,cis-inhibitor less impo-
tent (Figure 5c). On the other hand, the decahydro-
2-naphthyl rings of (2R,4aS,8aR)-cis,cis-inhibitor does
not have such unfavorable repulsions.

Comparison between racemic cis,cis- and racemic
trans,cis-decahydro-2-naphthyl-N-n- butylcarbamates
for BChE inhibition reveals that the former is less potent

TABLE 3. k2, Ki , and ki Valuesa of the BChE Inhibitions by Decahydro-2-naphthyl N-n-butylcarbamates

Inhibitorsb Ki (μM) k2(10−3s−1) ki (103 M−1s−1) Enantioselectivity

rac-(±)-trans,cis 3.0 ± 0.2 10.0 ± 0.5 3.3 ± 0.3 –
(2R,4aS,8aR)-cis,cis- 2.4 ± 0.5 9.1 ± 0.1 3.8 ± 0.8 2.7
(2S,4aR,8aS)-cis,cis- 5.0 ± 0.8 7.0 ± 0.3 1.4 ± 0.2 1.0
rac-(±)-cis,cis- 4.0 ± 0.5 9.0 ± 0.4 2.0 ± 0.3 1.4

a Obtained from the nonlinear least-squares curve fittings of kapp vs. [I] plot against Eq. (1) (Figure 4b).
b (2R,4aS, 8aR)- cis,cis-, (2S,4aR,8aS)-cis,cis-, and rac-(±)-cis,cis- stand for (2R,4aS,8aR)-, (2S,4aR,8aS)-, and racemic cis,cis-decahydro-2-naphthyl-N-n-

butylcarbamates. rac-(±)-trans,cis stand for (2R,4aS,8aS)- and (2S,4aR,8aR)-trans,cis-decahydro-2-naphthyl-N-n-butylcarbamates.
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FIGURE 5. (a) Superimposition of (2S,4aR,8aS)-(−)- and (2R,4aS,8aR)-(+)- cis,cis-decahydro-2-naphthols into the active site of acetyl li-
pase; (b) superimposition of (2S,4aR,8aS)-cis,cis-, (2R,4aS,8aR)-cis,cis-, (2S,4aR,8aR)-trans,cis-, (2R,4aS,8aS)-trans,cis-decahydro-2-naphthyl- N-
n-butylcarbamates into the active site of AChE [1–3]. The decahydro-2-naphthyl ring of (2S,4aR,8aS)-cis,cis- and racemic-trans,cis-inhibitors
strongly repulse the anionic substrate binding site of the enzyme, but that of (2R,4aS,8aR)-inhibitor does not have such repulsion and fits well into
the anionic substrate binding site; (c) superimposition of (2S,4aR,8aS)-cis,cis-, (2R,4aS,8aR)-cis,cis-, (2S,4aR,8aR)-trans,cis-, (2R,4aS,8aS)-trans,cis-
decahydro-2-naphthyl-N-n-butylcarbamates into the active site of BChE [4–7]. The decahydro-2-naphthyl ring of (2S,4aR,8aS)-cis,cis-inhibitor
strongly repulses the anionic substrate binding site of the enzyme, but those of (2R,4aS,8aR)- and racemic-trans,cis-inhibitors do not have such
repulsion and fit well into the anionic substrate binding site.
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than the latter (Table 3). This stereopreference (trans,cis
> cis,cis) is opposite to that for AChE inhibition.
This result indicates that the anionic substrate-binding
site of BChE is relatively larger than that of AChE
(Figure 5c). Therefore, the anionic substrate-binding
site of BChE is large enough to bind to the decahydro-2-
naphthyl ring of trans,cis-inhibitor. Thus, the unfavor-
able repulsion between the anionic substrate-binding
site of AChE and the decahydro-2-naphthyl ring of
trans,cis-inhibitor (Figure 5b) does not happen in the
BChE inhibition (Figure 5c).

In summary, optically pure (2S,4aR,8aS)-(−)- and
(2R,4aS,8aR)-(+)-cis,cis- decahydro-2-naphthols are re-
solved from the lipase-catalyzed acetylation reaction.
For both AChE and BChE inhibitions, (2S,4aR,8aS)-
cis,cis-decahydro-2-naphthyl-N-n-butylcarbamate is a
more potent inhibitor than (2R,4aS,8aR)-cis,cis-
decahydro- 2-naphthyl-N-n-butylcarbamate.
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