
Int. J. Mol. Sci. 2012, 13, 12349-12366; doi:10.3390/ijms131012349 

 
International Journal of 

Molecular Sciences 
ISSN 1422-0067 

www.mdpi.com/journal/ijms 

Article 

Mercuric Compounds Induce Pancreatic Islets Dysfunction and 
Apoptosis in Vivo  

Kuo-Liang Chen 1,†, Shing-Hwa Liu 2,†, Chin-Chuan Su 3,†, Cheng-Chieh Yen 4,†,  

Ching-Yao Yang 5, Kuan-I Lee 6, Feng-Cheng Tang 7, Ya-Wen Chen 8, Tien-Hui Lu 8,  

Yi-Chang Su 9 and Chun-Fa Huang 9,* 

1 Department of Urology, China Medical University Hospital, and School of Medicine,  

China Medical University, No.2 Yuh-Der Rd., Taichung 404, Taiwan; E-Mail: ckl_2001@yahoo.com 
2 Institute of Toxicology, College of Medicine, National Taiwan University, No.1 Jen-Ai Rd.,  

Section 1, Taipei 100, Taiwan; E-Mail: shliu@ha.mc.ntu.edu.tw 
3 Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital,  

No.135 Nanxiao St. Changhua City, Changhua County 500, Taiwan; E-Mail: 91334@cch.org.tw 
4 Department of Occupational Safety and Health, College of Health Care and Management,  

Chung Shan Medical University; and Department of Occupational Medicine,  

Chung Shan Medical University Hospital, No. 110 Section 1, Jian-Guo N. Rd.,  

Taichung 402, Taiwan; E-Mail: ycj@csmu.edu.tw  
5 Department of Surgery, National Taiwan University Hospital, and Department of Surgery,  

College of Medicine, National Taiwan University, Taipei 10043, Taiwan; E-Mail: cyang@ntuh.gov.tw 
6 Department of Emergency, Buddhist Tzu Chi General Hospital, Taichung Branch, No. 66 Section 1, 

Fongsing Rd., Tanzih Township, Taichung 427, Taiwan; E-Mail: leeguanto2002@yahoo.com.tw 
7 Department of Occupational Medicine, Changhua Christian Hospital, Changhua 500, Taiwan;  

E-Mail: 106159@cch.org.tw 
8 Department of Physiology and Graduate Institute of Basic Medical Science, School of Medicine, 

College of Medicine, China Medical University, No.91 Hsueh-Shih Rd., Taichung 404, Taiwan;  

E-Mails: ywc@mail.cmu.edu.tw (Y.-W.C.); tain_hui@hotmail.com (T.-H.L.) 
9 School of Chinese Medicine, College of Chinese Medicine, China Medical University,  

No.91 Hsueh-Shih Rd., Taichung 404, Taiwan; E-Mail: sychang@mail.cmu.edu.tw 

† These authors contributed equally to this work. 

* Author to whom correspondence should be addressed; E-Mail: cfhuang@mail.cmu.edu.tw;  

Tel.: +886-4-22053366 (ext. 3323); Fax: +886-4-22333641.  

Received: 2 July 2012; in revised form: 2 September 2012 / Accepted: 17 September 2012 /  

Published: 26 September 2012 

 

OPEN ACCESS



Int. J. Mol. Sci. 2012, 13 12350 

 

 

Abstract: Mercury is a toxic heavy metal that is an environmental and industrial pollutant 

throughout the world. Mercury exposure leads to many physiopathological injuries in 

mammals. However, the precise toxicological effects of mercury on pancreatic islets  

in vivo are still unclear. Here, we investigated whether mercuric compounds can induce 

dysfunction and damage in the pancreatic islets of mice, as well as the possible 

mechanisms involved in this process. Mice were treated with methyl mercuric chloride 

(MeHgCl, 2 mg/kg) and mercuric chloride (HgCl2, 5 mg/kg) for more than 2 consecutive 

weeks. Our results showed that the blood glucose levels increased and plasma insulin 

secretions decreased in the mice as a consequence of their exposure. A significant number 

of TUNEL-positive cells were revealed in the islets of mice that were treated with mercury 

for 2 consecutive weeks, which was accompanied by changes in the expression of the 

mRNA of anti-apoptotic (Bcl-2, Mcl-1, and Mdm-2) and apoptotic (p53, caspase-3, and 

caspase-7) genes. Moreover, plasma malondialdehyde (MDA) levels increased 

significantly in the mice after treatment with mercuric compounds for 2 consecutive weeks, 

and the generation of reactive oxygen species (ROS) in the pancreatic islets also markedly 

increased. In addition, the mRNA expression of genes related to antioxidation, including 

Nrf2, GPx, and NQO1, were also significantly reduced in these islets. These results 

indicate that oxidative stress injuries that are induced by mercuric compounds can cause 

pancreatic islets dysfunction and apoptosis in vivo. 
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1. Introduction 

Mercury, a toxic heavy metal and a widespread environmental pollutant, poses a serious health 

hazard [1,2]. Mercury is normally present in 3 forms-elemental mercury (Hg0), inorganic mercury 

(Hg2+ and Hg+), and organic mercury (methylmercury, MeHg)-all of which can produce varying 

degrees of toxic effects in many organs or systems. These effects include cardiovascular disease, 

endocrine system disruption, neurotoxicity, and immunotoxicity [3–5]. A previous study indicated that 

approximately 80% of mercury vapor (inorganic mercury) is inhaled through the lungs and then 

absorbed into the bloodstream, and remaining in the circulation for a long enough period to be 

distributed to other tissues. The organic form of mercury, MeHg, causes an irreversible neurotoxic 

disorder in mammals through biotransformation in the food chain, such as consumption of 

contaminated fish, seafood, and aquatic mammals [6,7]. The pancreatic islet cells destroyed and an 

increased incidence of diabetes mellitus (DM) was found in patients with Minamata disease (MeHg 

poisoning) in Japan [8,9] The study of Shigenaga [10] also found that repeated treatment of rats with 

MeHg induced a high blood glucose level that was accompanied by pancreatic islets injuries. Recently, 

Chen et al. [11,12] reported that mercuric compounds exposure can induce pancreatic β-cell 

dysfunction and death in vitro. However, the toxicological effects and possible mechanism by which 

mercuric compounds caused damage to the pancreatic islets in vivo remained to be clarified. 
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DM is part of a group of metabolic diseases that is characterized by hyperglycemia originating from 

defects of insulin secretion by the pancreatic β-cells and/or insulin action in the peripheral tissues. 

Many studies have reported that the death of pancreatic islet -cells contributes to type 1  

(insulin-dependent) diabetes, which is a prototype of organ-specific autoimmune diseases in which an 

immune-mediated inflammation results in the selective destruction and infiltration of islet β-cells, 

inhibits insulin secretion, and causes pancreatic β-cell death [13,14]. Some insults, such as 

lipoxygenases (expressed in human and rodent islets), can cause injury by inducing oxidative  

stress-regulated inflammatory damage and cell death in islet β-cells [15]. In addition, the production of 

reactive oxygen species (ROS) results in oxidative stress, which induces undesirable biological 

reactions and injuries to functional cells, including pancreatic islet β-cell dysfunction and apoptosis, 

that are caused by cytokines or autoimmune attack in type 1 DM. Pancreatic β-cells are reported to be 

vulnerable to oxidative stress damage [16,17]. Toxic metals, such as mercury and arsenic, can induce 

toxic effects via oxidative stress leading to apoptosis and pathophysiological injuries, which then cause 

to many disorders including DM [18–21]. Taken together, in this study, we sought to elucidate the 

toxicological effects induced by mercuric compounds (MeHg and mercuric chloride (HgCl2)) in  

the pancreatic islets of male mice (in vivo model) and to explore the hypothesis that mercuric 

compounds-induced oxidative stress damage leads to dysfunction and apoptosis in pancreatic islets. To 

examine these issues, we investigated the deleterious effects of exposure to MeHg (2 mg/kg/day) and 

HgCl2 (5 mg/kg/day) for 2 to 6 consecutive weeks in male mice by monitoring the changes in blood 

glucose, plasma insulin, and MDA levels, and by analyzing the Hg concentration of mouse whole 

blood samples. Moreover, we examined whether exposure to mercuric compounds could induce 

apoptosis and ROS generation while altering apoptotic- and antioxidant-related gene expression in the 

islets of treated mice at the end of 2 weeks. 

2. Results and Discussion 

2.1. Effects of Mercuric Compounds on Blood Glucose Regulation and Plasma Insulin Levels in Mice 

To investigate the effects of mercuric compounds on in vivo pancreatic islet function, we monitored 

the changes in blood glucose and plasma insulin levels in MeHgCl or HgCl2-exposed mice. Fasting 

blood glucose levels in mice showed a marked increase and the plasma insulin levels decreased after  

4 or 6 consecutive weeks of exposure to MeHgCl (2 mg/kg/day) or HgCl2 (5 mg/kg/day) as compared 

with the control group (Figure 1A). After 2 consecutive weeks of exposure to MeHgCl, it was showed 

a light, but not statistically significant, increase in blood glucose levels, but there was a remarkable 

decrease in plasma insulin levels. By contrast, mice exposed to HgCl2 for 2 consecutive weeks were 

showed a significant decrease in blood glucose levels and increased plasma insulin levels (Figure 1A). 

To confirm that exposure to mercuric compounds can cause islet damage resulting in blood glucose 

dysregulation, we used the oral glucose tolerance test (OGTT). As shown in Figure 1B, both MeHgCl- 

and HgCl2-exposed mice revealed an elevation in glucose intolerance (Figure 1B,a), and it was also a 

marked decrease in plasma insulin after glucose loading for 30 min following 2 consecutive weeks of 

exposure. Moreover, the mercury levels in the whole blood of mice exposed to mercuric compounds 

over a 2- to 6- consecutive weeks period were significantly elevated (MeHgCl group:  
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4970.8 ± 38.8 μg/L, 14827.6 ± 1938.7 μg/L, and 27741.4 ± 6747.1 μg/L at 2, 4, and 6 weeks, 

respectively; HgCl2 group: 432.0 ± 111.2 μg/L, 683.4 ± 47.9 μg/L, and 865.8 ± 222.5 μg/L at 2, 4, and 

6 weeks, respectively; age-matched control group ranged from 2.4 ± 0.3 μg/L to 3.0 ± 0.5 μg/L)  

(Table 1). These results suggest that treatment with MeHgCl or HgCl2 destroys pancreatic islet 

function in mice. 

Figure 1. Effects of mercuric compounds on the regulation of blood glucose and plasma 

insulin levels in mice. (A) Mice were gavaged with 2 mg/kg/day MeHgCl or 5 mg/kg/day 

HgCl2 for 6 consecutive weeks. Fasting blood glucose was determined by SureStep blood 

glucose meter (A,a), and the plasma insulin levels were analyzed by insulin enzyme-linked 

immunosorbent assay (ELISA) assay kit (A,b) at 2, 4, and 6 weeks. (B) Oral glucose 

tolerance and insulin in fasting mice were determined as described in the Materials and 

Methods section. Oral glucose tolerance tests were carried out in mice given 2 mg/kg/day 

MeHgCl or 5 mg/kg/day HgCl2 for 2 consecutive weeks (B,a). Plasma insulin levels in 

mercuric compounds-treated mice after 2 g/kg glucose loading for 30 min were analyzed 

(B,b). All data are presented as means ± standard errors of the mean (SEM). (n = 16 mice 

for each group).* p < 0.05 compared with the control group. 
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Figure 1. Cont. 

 

Table 1. Whole blood mercury levels in mercuric compounds-exposed mice. 

Weeks 
Group 

Control MeHgCl-2 (mg/kg) HgCl2-5 (mg/kg) 

2 2.4 ± 0.3 4970.8 ± 38.8 * 432.0 ± 111.2 * 
4 2.6 ± 0.4 14827.5 ± 1938.7 * 683.4 ± 47.9 * 
6 3.0 ± 0.5 27741.4 ± 6747.1 * 865.8 ± 222.5 * 

1. Hg content was expressed as μg/L; 2. Data are expressed as mean ± SEM (n = 16 mice for each group).  

* p < 0.05 as compared with control group. 

2.2. Mercuric Compounds Caused Apoptosis in the Pancreatic Islets of Exposed Mice 

To investigate whether mercuric compounds induce dysfunction of pancreatic islets via an apoptotic 

mechanism, we performed terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) 

and insulin dual staining, and were measured the expression of apoptosis-related genes (by real-time 

quantitative RT-PCR). As shown in Figure 2, the number of TUNEL-positive cells in the isolated islets 

of mice was significantly increased after exposure to MeHgCl (2 mg/kg/day) or HgCl2 (5 mg/kg/day) 

for 2 consecutive weeks, which only revealed a weak insulin immunoreactivity in comparison with the 

control group. In addition, the expression of Bcl-2, Mcl-1, and Mdm-2 (anti-apoptotic genes) were 

showed an obvious decreased (Figure 3A), while that of p53 (apoptotic gene) dramatically increased; 

these changes were accompanied by a marked up-regulation of caspase-3 and caspase-7 gene 

expression levels (approximately 1.5 to 2.0 fold; Figure 3B) in the isolated islets of mice exposed to 

MeHgCl or HgCl2. These results indicate that exposure to mercuric compounds in vivo can cause 

injury to pancreatic islets, leading to a pathophysiological state associated with apoptosis. 
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Figure 2. Immunofluorescence analysis of islet apoptosis induction in mercuric 

compounds-exposed mice. Mice were gavaged with 2 mg/kg/day MeHgCl or 5 mg/kg/day 

HgCl2 for 2 consecutive weeks, and dual immunofluorescence staining of islet using  

anti-insulin (red) and TUNEL (green) was performed as described in the Materials and 

Methods section (400×). 

 
Control MeHgCl-2 mg/kg HgCl2-5 mg/kg 

Figure 3. Mercuric compounds treatment regulated apoptotic related gene expression in 

the islets of mice. Mice were gavaged with 2 mg/kg/day MeHgCl or 5 mg/kg/day HgCl2 

for 2 consecutive weeks, and the expression of anti-apoptotic (Bcl-2, Mcl-1, Mdm-2)  

(A) and apoptotic (p53, caspase-3 and caspase-7) (B) genes in the isolated islets were 

analyzed by real-time quantitative RT-PCR using SYBR Green. Target gene expression 

was normalized to β-actin, and the results are expressed as a fold change from the control. 

Results are expressed as mean ± SEM. (n = 8 mice for each group). * p < 0.05 as compared 

with control group. 

 
(A) (B) 
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2.3. Exposure to Mercuric Compounds Induced Oxidative Stress Damage in the Pancreatic Islets 

To further explore the involvement of oxidative stress damage in the mechanism underlying the 

toxicological effects induced by mercuric compounds in the islets of mice, we analyzed lipid 

peroxidation (LPO) production (as an indicator of oxidative stress damage) in the plasma and ROS 

generation in the islets of exposed mice. After the mice treated with MeHgCl (2 mg/kg/day) or HgCl2 

(5 mg/kg/day) for 2 to 6 consecutive weeks, the plasma MDA levels were significantly increased at  

2 weeks and continued to increase at 4 and 6 weeks (Figure 4). In addition, the results of  

2',7'-dichlorofluorescein (DCF) fluorescence probe intensity (as an indicator of ROS formation) and 

LPO assay also revealed that the intracellular ROS production (Figure 5A) and MDA levels (Figure 5B) 

in the isolated islets markedly increased after the mice were treated with MeHgCl or HgCl2 for  

2 consecutive weeks.  

Furthermore, we analyzed the mRNA expression levels of Nrf2, GPX, and NQO1, which play an 

important role in the antioxidant system. A significant decrease in the expression of Nrf2, GPX, and 

NQO1 was revealed in the isolated islets of mice exposed to MeHgCl (2 mg/kg/day) or HgCl2  

(5 mg/kg/day) for 2 consecutive weeks (Figure 6). These results indicate that exposure to mercuric 

compounds induces oxidative stress injury in islets in vivo. 

Figure 4. Effect of mercuric compounds on plasma lipid peroxidation (LPO) levels in 

mercuric compounds-exposed mice. Mice were gavaged with 2 mg/kg/day MeHgCl or  

5 mg/kg/day HgCl2 for 2 to 6 consecutive weeks. Malondialdehyde (MDA) levels of the 

plasma were determined using the commercial manufacturer’s assay kit as described in the 

Materials and Methods section. All data are presented as means ± SEM. (n = 16 mice for 

each group). * p < 0.05 compared with control group. 
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Figure 5. Mercuric compounds-triggered reactive oxygen species (ROS) generation in the 

islets of mice. Mice were treated (by oral gavaged) with 2 mg/kg/day MeHgCl or  

5 mg/kg/day HgCl2 for 2 consecutive weeks, and the islets were isolated from mice.  

(A) The peroxide-sensitive fluorescent probe (DCFH-DA) was used to detect the ROS 

production in the islets. The upper panels were transmitted light images (a–c); staining 

with DTZ) and the lower panels were DCF fluorescence images (d–f) (200×).  

(B) Malondialdehyde (MDA) levels of the isolated islets were determined using the 

commercial manufacturer’s assay kit as described in the Materials and Methods section. 

Data in B are presented as means ± SEM. (n = 16 mice for each group). * p < 0.05 

compared with control group. 

 
(A) 

 
(B) 

Figure 6. Related anti-oxidant gene expression in the isolated islets of mice exposed (by 

gavage) to 2 mg/kg/day MeHgCl or 5 mg/kg/day HgCl2 for 2 consecutive weeks. The 

expression of Nrf2, GPx, and NQO1 genes was determined by real-time quantitative  

RT-PCR using SYBR Green. Target gene expression was normalized to β-actin, and the 

results are expressed as a fold change from the control. Results are expressed as  

mean ± SEM. (n = 8 mice for each group). * p < 0.05 as compared with control group. 
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2.4. Discussion 

Many in vivo studies have reported that exposure to high doses of mercury (4–40 mg/L in drinking 

water or 0.2–2 mg/kg/day for more than 7 consecutive days) can cause severe neuropathological 

injuries and neurophysiological disorders [22,23]. Recently, the growing studies have also shown that 

the toxicological effects of MeHgCl (2–26 mg/kg/day) or HgCl2 (5–10 mg/kg/day) induced by  

long-term exposure within the cerebral cortex, liver, kidney, and lung of experimental animals were 

accompanied by a significant production of ROS [24–27]. ROS, which include superoxide anion, 

hydrogen peroxide, and hydroxyl radicals, are highly reactive and can damage cell structure and 

function [28]. Many factors, such as ionizing radiation, xenobiotics, and toxic metals can promote 

ROS generation, which triggers cell death and implicates in the development of various  

disorders [19,20]. Mercury induces toxic effects by causing oxidative stress from ROS production, 

which oxidizes the membrane lipids of cells and causes the alteration of cellular function, and 

eventually results in cell death and pathophysiological injuries in mammals [19–21,26]. Moreover, it 

has been reported that oxidative stress plays a crucial role in inducing pancreatic islet β-cell injuries 

and the pathogenesis of DM, probably as a result of excessive levels of mitochondrial ROS production 

and the presence of fewer antioxidant enzymes in pancreatic β-cells [29,30]. For these reasons, it was 

supported that oxidative stress might contribute to the induction of the pancreatic islet injuries 

resulting from mercury intoxication. Recently, Chen et al. [11,12] reported that treatment with 

mercuric compounds can induce dysfunction and cell death in a pancreatic β-cell-derived cell line; the 

role of ROS in the toxicological effects induced by mercury on the pancreatic islets (in vivo), however, 

has not been understood. In this study, our results showed that exposure to MeHgCl (2 mg/kg/day) or 

HgCl2 (5 mg/kg/day) for more than 2 consecutive weeks caused a significant impairment in blood 

glucose regulation and decreased plasma insulin levels in mice, which was accompanied by a marked 

accumulation of mercury in the whole blood. In addition, the significant increase in the number of 

TUNEL-positive cells and changes to the expression of apoptosis-related genes in the islets of mice 

exposed to mercury were also revealed, that was along with an increase in plasma MDA levels, the 

induction of ROS generation, and the decrease in antioxidant-related mRNA expressions. Therefore, 

our results indicate that mercury causes oxidative stress-induced apoptosis in pancreatic islet cells, 

leading to deleterious effects on blood glucose regulation in vivo. 

Our results in this study found that a significant increase in blood glucose and a decrease in plasma 

insulin levels were showed after treatment mice with MeHgCl (at 2 to 6 consecutive weeks) or HgCl2 

(at 4 to 6 consecutive weeks). It is also interesting to note that after the mice treated with HgCl2 for 2 

consecutive weeks, the suppression of blood glucose was associated with an increase of plasma insulin 

levels; but a significant elevation of blood glucose intolerance and a decrease in plasma insulin after 

glucose loading were also revealed. This effect might be related to the started induction of islet cell 

apoptosis in early stage by HgCl2, leading to the rupture the insulin secretory vesicle membranes and 

resulting in insulin release. Furthermore, blood glucose homeostasis is generally regulated by skeletal 

muscle and adipose tissues. Growing studies have focused on the mechanism by which metal-mediated 

glucose transport contributes to metal-induced pathologies [31–33]. It has been reported that HgCl2 

can increase the levels of glucose uptake and transport in the adipocytes [34,35]. However, some 

studies found the opposite results [36,37]. On the basis of these reasons, we suggest that HgCl2 may be 
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responsible for the disturbance of blood glucose homeostasis; however, the detailed mechanisms of 

this disturbance still require future investigation. 

To ascertain whether MeHgCl- and HgCl2-induced islet dysfunction and apoptosis in vivo was 

mediated by a stress-related mitochondrial pathway, we analyzed the mRNA expressions of Bcl-2, 

Mcl-2, Mdm-2, p53, caspase-7, and caspase-3 in the islets of MeHgCl- or HgCl2-treated mice. 

Apoptosis, which is also known as programmed cell death, plays an important role in controlling the 

development of multicellular organisms and maintaining tissue homeostasis and in an increasing 

number of disease processes ranging from neurodegenerative diseases to the development of  

DM [30,38]. Caspases are cysteine aspartate proteases, which are represented the hallmark of the 

apoptotic process. Activation of the mitochondria (intrinsic)-regulated apoptosis pathway results in the 

activation of the BH3-only members of the Bcl-2 family (i.e., Bim, Bid, Bad, Puma, Noxa, Hrk, Bik, 

and Bmf) to initiate apoptosis signaling by binding to Bcl-2-like prosurvival proteins (i.e., Bcl-2,  

Bcl-xL, Bcl-w, and Mcl-1). The downstream apoptosis effector Bax or the Bax-related effector Bak is 

subsequently released, which induces a decrease in the mitochondrial outer membrane potential and 

the release of cytochrome c from mitochondria into the cytosol, leading to the activation of the caspase 

family of proteins [39,40]. In addition, the enhancement of Bak interaction with p53 also stimulates 

apoptotic effects [41]. Mdm2, an important negative regulator of the p53 tumor suppressor, binds to 

p53 and inhibits p53-mediated transactivation. Increased levels of mdm2 can inactivate the apoptotic 

and cell cycle arrest functions of p53 and regulate cell proliferation [42]. Recent studies have shown 

that the involvement of these apoptosis-related gene alterations in response to toxic metals (such as 

mercury and arsenic) can induce apoptosis [21,43,44]. Here, we found that the expression of  

anti-apoptosis-related mRNAs, including Bcl-2, Mcl-1, and mdm-2, were significantly decreased in the 

islets of mice treated with MeHgCl and HgCl2 for 2 consecutive weeks. Furthermore, the expression of 

apoptosis-related mRNAs, including p53, caspase-3, and caspase-7 were dramatically increased. 

These effects were accompanied by a significant increase in TUNEL-positive cells in the islets of 

mercuric compounds-treated mice.  

Oxidative stress, induced by toxic metals (including mercury), plays an important role in apoptosis 

and pathological injuries, which are accompanied by damage to antioxidant enzymes [20,21,44]. The 

Nrf2 pathway has been implicated in the cell’s response to pro-oxidant and electrophilic damage. 

Following the electrophilic attack, Nrf2 is released from Keap1-Nrf2 complex and translocated from 

the cytosol to the nucleus. Subsequently, the Nrf2 binds to antioxidant and electrophile response 

elements, and increases in the expression of many other antioxidant genes and proteins, such as heme 

oxygenase-1 (HO-1), glutathione S-transferase A2 (GSTA2), thioredoxin reductase, and NAD(P)H 

quinone oxidoreductase (NQO1) [45–47]. Enhancing these ROS-scavenging capacities is important in 

maintaining cellular redox homeostasis and decreasing oxidative stress [48]. Recently, Ni et al. [49] 

has reported that a knockdown of Nrf2 greatly increased microglial cell death during MeHg exposure. 

Furthermore, the encoded protein NQO1 is a member of the NAD(P)H dehydrogenase (quinone) 

family, which forms homodimers and reduces quinones to hydroquinones to prevent ROS production 

from the reduction of an electron in the quinone. Thus, NQO1 plays a classical direct antioxidant  

role in the detoxification of ROS, which can be induced by the overproduction of free radicals from 

toxic chemicals- induced oxidative stress [48,50,51]. Moreover, glutathione peroxidase (GPx) is an 

important antioxidant enzyme that catalyzes the reduction of hydrogen peroxide (H2O2) [52]. 
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However, whether mercury-induced ROS production leading to apoptosis accompanied with the 

decrease in the gene expression level of antioxidants (including: Nrf2, GPx, and NQO1) in the islets of 

mercury-exposed mice remained to be clarified. The present work showed that DCF fluorescence 

intensity and MDA levels in the islets of mice treated with MeHgCl or HgCl2 for 2 consecutive weeks 

were dramatically increased. Furthermore, the mRNA expression of Nrf2, GPx, and NQO1 were 

remarkably decreased in the islets of mice treated with mercuric compounds. These results implicate 

that mercury-induced oxidative stress plays a key role in pancreatic islets dysfunction and death  

in vivo. 

3. Experimental Section  

3.1. Animal Preparation and Study Design  

Male ICR mice (6 weeks old, 20–25 g) were obtained from the animal center of the BioLASCO 

Taiwan Co., Ltd. (Taipei, Taiwan). Experimental protocols were approved by the Institutional Animal 

Care and Use Committee (IACUC) and the care and use of laboratory animals were conducted in 

accordance with the guidelines of the Animal Research Committee of China Medical University. The 

mice were housed in groups of six per cage under standard laboratory conditions at a constant 

temperature (23 ± 2 °C), 50% ± 20% relative humidity, and given a solid diet and tap water available 

ad libidum, with 12 h:12 h light-dark cycles. The mice were acclimatized to the laboratory conditions 

prior to the experiments and all tests were carried out between 8:00 AM and 05:00 PM. The mice were 

randomly divided into 3 groups: MeHgCl (2 mg/kg/day), HgCl2 (5 mg/kg/day), and age-matched 

control (distilled water only) that were orally gavaged for 2 to 6 consecutive weeks. At each time point 

(2, 4, and 6 weeks; n = 16 mice for each group), the whole blood samples were collected from an 

eyehole vessel (under anesthesia), and whole blood mercury concentrations were detected. Morover, 

the whole blood samples were centrifuged at 3000g for 10 min, and plasma was obtained, and insulin 

and LPO levels were assayed immediately.  

Prior to pancreatic islet isolation and purification, the mice were treated with or without mercuric 

compounds for 2 consecutive weeks (n = 8 mice for each group) and then sacrificed by decapitation 

under pentobarbital anesthesia (80 mg/kg, intra-peritoneal (i.p.)). The pancreas was quickly removed 

and the islets were isolated. After islets purification, the ROS levels, MDA levels, and apoptosis- and 

antioxidant-related genes expression were analyzed. 

3.2. Blood Glucose Measurement and Oral Glucose Tolerance Test (OGTT) 

Mice were treated with MeHgCl (2 mg/kg/day), HgCl2 (5 mg/kg/day), or distilled water  

(age-matched control group; n = 16 mice for each group) for 2 to 6 consecutive weeks. Blood samples 

were collected from mouse eyehole after an overnight fast, and blood glucose levels were measured 

using an OneTouch® SureStep® blood glucose meter (Lifescan, Milpitas, CA, USA). Oral glucose 

tolerance test (OGTT) was performed as previously detailed [43]. Mice were fed with D-glucose by 

gavage after an overnight fast. Blood was collected (from an eyehole) before treatment and 30, 60, 90, 

120, and 150 min after glucose administration.  
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3.3. Plasma Insulin Level Detection 

To measure the plasma insulin concentration, the whole blood of mice treated with MeHgCl  

(2 mg/kg/day), HgCl2 (5 mg/kg/day), or distilled water (age-matched control group; n = 16 mice for 

each group) for 2 to 6 consecutive weeks was collected and centrifuged at 3000g for 10 min to obtain 

plasma. Aliquots of samples were then subjected to insulin antiserum immunoassay according to the 

manufacturer’s instructions (Mercodia, Uppsala, Sweden). 

3.4. Determination of Mercury Concentrations 

To determine the Hg concentrations, 300 mg of whole blood from each mouse was placed in a  

15 mL polyethylene tube, and 0.5–1 mL of a 3:1 mixture of hydrochloric acid (35%) and nitric acid 

(70%) was added. The tubes were capped and allowed to stand overnight in a 50 °C oven. After 

cooling, a suitable dilution buffer (0.3% nitric acid and 0.1% Triton X-100 in distilled water) was 

added to the digested material, and the total mercury content was determined by Inductively Coupled 

Plasma Mass Spectrometry (ICP-MS). The detection limit for mercury was ~0.1 ppb (μg/L). 

3.5. TUNEL and Insulin Double Staining 

Mice were treated with MeHgCl (2 mg/kg/day), HgCl2 (5 mg/kg/day), or distilled water  

(age-matched control group) for 2 consecutive weeks, and their pancreases were isolated and fixed in 

10% formaldehyde in PBS. To examine apoptosis in islets, TUNEL and insulin (to identify β-cells) 

double immunostaining was performed on 5-μm pancreas sections (onparaffin slide). After 

deparaffinization and rehydration, TUNEL staining was performed using a fluorometric  

transferase-mediated TUNEL assay kit (Promega Corporation, Madison, WI, USA) by following the 

manufacturer’s procedure. Following the TUNEL stain, the slide was rinsed in phosphate-buffer saline 

(PBS) and incubated with a rabbit polyclonal IgG anti-insulin antibody (Santa Cruz Biotechnology, 

Inc., CA, USA) for 1 h at room temperature. The slide was then washed four times with PBS and 

incubated with the secondary antibody labeled with Cy3 (Millipore Corporation, Billerica, MA, USA) 

for 1 h. After being washed twice with PBS, the slide was observed with a Leica DMIL inverted 

fluorescence microscope equipped with a charge-coupled device camera (400× magnification). 

3.6. Lipid Peroxidation Detection 

The formation of MDA, a substance produced during lipid peroxidation, was determined using a 

commercial LPO assay kit (Calbiochem, San Diego, CA, USA) according to the manufacturer’s 

instructions. Briefly, the isolated islets were homogenized separately in ice-cold 20 mM Tris-HCl 

buffer (pH 7.4), and then the homogenized samples were assayed immediately. Equal volumes of 

plasma and islet homogenates (n = 16 mice for each group) were added to 3.25 volumes of diluted R1 

reagent (10.3 mM N-methyl-2-phenylindole in acetonitrile). After mixing, the mixture was added to a 

0.75 volumes of 37% HCl and was then incubated at 45 °C for 60 min. After cooling, the absorbance 

of the clear supernatant was subjected to an enzyme-linked immunosorbent assay (ELISA) microplate 

and read at 586 nm. The linearity of the standard curve was confirmed with 0, 1, 2.5, 5, 10, 20, and  

40 μM of MDA standard (1,1,3,3-tetramethoxypropane in Tris-HCl). The protein concentration was 
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determined using a bicinchoninic acid protein assay kit with an absorption band of 570 nm. (Pierce, 

Rockford, IL, USA). 

3.7. Pancreatic Islet Isolation and Purification Procedure 

Isolation of the mouse islet of Langerhans was performed as previously described [53,54]. In brief, 

collagenase, prepared in Hank’s balanced salt solution with 25 mM Hepes, was infused into the main 

bile duct of each mouse with a 30-gauge needle connected to a 10 cc syringe. The whole pancreas  

was collected and digested at 37 °C. The islets were obtained using a Ficoll density gradient of  

1.069–1.096 g/mL. The number of islets was counted by staining samples with dithizone (DTZ), and 

the islet equivalent (IEQ) range was 75–150 μm (where 1 IEQ is equivalent to an islet with a diameter 

of 150 μm). The islets were cultured in RPMI 1640 medium containing fetal bovine serum (10%), 

penicillin-streptomycin (100 unit/mL), L-glutamate (2 mM), and Hepes (25 mM). 

3.8. Real-Time Quantitative Reverse-Transcribed Polymerase Chain Reaction (RT-PCR) Analysis 

The expression of related genes was evaluated by the real-time quantitative RT-PCR as previously 

described [21,44]. Briefly, intracellular total RNA was extracted from 300 IEQ islets of each mouse  

(n = 16 mice for each group) using RNeasy kits (Qiagen) according to the manufacturer’s instructions. 

Samples were heated to 90 °C for 5 min to remove any secondary structures, and then placed 

immediately on ice. Samples were reverse transcribed into cDNA using the AMV RTase system 

(Promega Corporation, Pty. Ltd., Madison, Wisconsin, USA) according to the manufacturer’s 

instructions. Each sample (2 μL) was tested with the Sybr Green Real-time PCR reagent (Invitrogen, 

Grand Island, NY, USA) using mouse-specific primers ((1) Bcl-2, Mcl-1, p53, Caspase-3, Caspase-7, 

glutathione peroxidase (GPx), NAD(P)H quinone oxidoreductase (NQO-1), and β-Actin as described in 

Lu et al. [21] and Yen et al. [44]; (2) murine double minute 2 (mdm2): forward: 5'-GGAGCGCAA 

AACGACACTTACA-3' and Reverse: 5'-CTCGCTGCTGCTGCTGCTAC-3' [55]; (3) nuclear factor 

erythroid-derived 2-related factor 2 (Nrf2) : forward: 5'-TGAAGCTCAGCTCGCATTGATCC-3' and 

Reverse: 5'-AAGATACAAGGTGCTGAGCCGCC-3' [56]) in a 25 μL reaction volume, and 

amplification and real-time fluorescence detection were performed using the ABI StepOnePlus 

sequence detection system (PE, Applied Biosystems, Carlsbad, CA, USA). The cycling conditions 

were as follows: 2 min at 50 °C, 10 min at 95 °C, 40 cycles of 92 °C for 30 s, and 1 min at 60 °C. 

Real-time fluorescence detection was performed during the 60 °C annealing/extension step of each 

cycle. A melt-curve analysis was performed on each primer set to ensure that no primer dimers or 

nonspecific amplification was present under the optimized cycling conditions. Data analysis was 

performed using StepOne™ software (Version 2.1, Applied Biosystems, Carlsbad, CA, USA, 2008). 

All amplification curves were analyzed with a normalized reporter (Rn: the ratio of the fluorescence 

emission intensity to the fluorescence signal of the passive reference dye) threshold of 0.2 to obtain the 

CT values (threshold cycle). The reference control genes were measured with four replicates from each 

PCR run, and the CT average was used for relative quantification analyses (the relative quantification 

method using real-time PCR efficiencies [57]). TF expression data were normalized by subtracting the 

mean of the reference gene CT values from their CT values (ΔCT). The fold change value was 

calculated using the expression 2−ΔΔC
T, where ΔΔCT represents ΔCT-condition of interest − ΔCT-control. Prior to 
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conducting statistical analyses, the fold change from the mean of the control group was calculated for 

each individual sample. 

3.9. Detection of Intracellular ROS in Islets 

Mice were treated with MeHgCl (2 mg/kg/day), HgCl2 (5 mg/kg/day), or distilled water  

(age-matched control group) for 2 consecutive weeks, and the islets were then isolated. After 15 min of 

incubation of 2',7'-dichlorfluorescein diacetate (DCFH-DA), the islets were washed twice in PBS and 

the images were captured using a Leica DMIL inverted fluorescence microscope equipped with a 

charge-coupled device camera (with 200× magnification). 

3.10. Statistical Analyses 

Data are presented as means ± standard errors of the mean (SEM). Significant differences were 

evaluated using Student’s t-test. When more than one group was compared with the control, the 

significance was evaluated according to a one-way ANOVA, and the Duncan’s post hoc test was 

applied to identify group differences. The p value less than 0.05 was considered to be significant. The 

statistical package SPSS, version 11.0 for Windows (SPSS Inc., Chicago, IL, USA, 2001) was used for 

the statistical analyses. 

4. Conclusions  

Collectively, the present in vivo results provide evidence that mercuric compounds (MeHgCl and 

HgCl2) are capable of causing pancreatic islet dysfunction (elevated blood glucose levels and 

decreased plasma insulin secretion) and apoptosis (decreased anti-apoptotic (Bcl-2, Mcl-1, and mdm-2) 

and increased apoptotic (p53, caspase-3, and caspase-7) related gene expressions) in treated mice. 

More importantly, this study has demonstrated that mercuric compounds induce pancreatic islet 

apoptosis in vivo through ROS generation, which leads to the destruction of antioxidant enzyme 

function (decreased the mRNA expressions of Nrf2, GPx, and NQO1). These observations further 

clarify that mercuric compounds-induced oxidative stress injuries cause pancreatic islet dysfunction 

and apoptosis in vivo. 
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