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Abstract
Data envelopment analysis (DEA)
separates efficiencies from non-efficiencies.

The efficient decision making units (DMUs)
define the efficient frontier in data
envelopment analysis. The project develops a
new sensitivity analysis approach for all
basic DEA models, such as, CCR, BCC and
additive models, when the data of all DMUs
are varied simultaneously. We consider the
robustness of an extreme efficient DMU by
giving increase in inputs or giving decrease
in outputs of a subset of DMU, if the DMU
remains efficient after the change. By means
of modified DEA models, in which the
extreme efficient DMU under evaluation is
not included in the reference set, and the
stability region for maintaining efficiency is
founded.

The existing literature on sensitivity
analysis deals with only change the inputs
and/or outputs of one DMU while the others
remain unchanged, or only the upper bound
of variation is found for simultaneous
changes in all the data. In our framework,
data are allowed to vary simultaneously for
any subset of DMUs and across different
subsets of inputs and outputs. This sensitivity
analysis is modeled as a non-linear
programming whose optimal values yield a
stability region of an extreme efficient DMU.
Sufficient and necessary conditions are
provided for upward variations of input
values of activity and downward variations of
output values of activity for some DMUs
such that an extreme efficient DMU remains
efficient.

This approach generalizes the usual



sensitivity analysis of DEA and provided an
algorithm that using linear programming
model to approximate the optimal solution of
the non-linear model.

Keywords: Data Envelopment Analysis
(DEA), Decision-Making Unit (DMU),
Efficient Frontier, Sensitivity Analysis,
Robustness, Non-linear programming.

1. Background and Objective

Since the original publication {1], DEA
has become a popular method for analyzing
the efficiency of various organization units
[2]. Relying on a technique based on
mathematical programming without
introduction of any subjective or economic
parameters (weights, prices, etc.), DEA
separates efficient from inefficient decision
making units (DMUs) and indicate the
‘efficient peers’ for each inefficient DMU.

One of the important topics in DEA is
the sensitivity of DMUs. Chames et al. [3]
first investigated the sensitivity of single
output variation on the CCR model by
updating the inverse of the optimal basis
matrix. Charnes and Neralic [4] used the
same technique to explore the sensitivity of
the additive model in DEA for a
simultaneous change in all inputs and/or all
outputs of an efficient DMU. Andersen and
Petersen [5] proposed the ‘extended DEA
measure’ (EDM) model for ranking the
efficient units. The EDM model (is also
called super-efficiency model) was widely
applied in the DEA sensitivity analysis [6-9].
It is based on modifying DEA models in
which the test DMU is excluded from the
reference set. Charmes et al. [6,7] provided a
l-norm and co-norm to compute stability
regions for efficiency classifications under

additive model. Zhu [8] used the
super-efficiency model to  determine
necessary and sufficient conditions for

preserving efficiency of the efficient DMUs
under the CCR ratio model when data of the
test efficient DMU were changed. Seiford

and Zhu [9] generalized the method to yield
the entire stability region of the test DMU.

The above sensitivity analysis literatures
deal with the situation that the data variations
are only applied to the test DMU. However,
possible data errors may occur for each DMU
simultaneously or independently. Thompson
et al. [10] utilized Strong Complementary
Slackness Condition (SCSC) multipliers to
analyze the stability of CCR efficiency when
the data for all efficient and inefficient
DMUs were simultaneous changed 1n
opposite directions. Seiford and Zhu [11]
used the super-efficiency models to consider
the data changes in all DMUs simultaneously.
Their discussion is based on a worst-case
scenario in which the efficiency of the test
DMU is deteriorating while the efficiencies
of all other DMUs are improving. For each
efficient DMU, a range of stability for
preserving efficiency is calculated.

In reality, uncertain conditions may
affect a subset of DMUs only rather than all
of DMU, i.e., the possible data errors occur
on the affected DMUSs only. In this research,
we used the modified DEA models to study
the stability of efficient DMUs when the data
of a subset (including the test efficient DMU)
of DMUs are changed simultaneously in the
same direction. By means of extended
versions of super-efficiency additive model,
we propose a non-linear programming
problem whose optimal values yield
particular stability regions for the test DMU.
Sufficient and necessary conditions for
preserving the test DMU remains efficient
with respect to the data changed type are
provided. These results remain valid under
other DEA models when data of a subset of
DMUs change simultaneously.

The following section proposed the
sensitive analysis for DEA additive models.
Non-linear models are proposed for finding
the stability region of a test efficient DMU.
Sufficient and necessary conditions are
proved in this research. A numerical example
is presented in Section 3. Discussions and
conclusions are presented in Section 4.



2. Sensitivity Analysis

2.1 Type of Data Change

In the research, we are interested in the
stability of a specific extreme efficient
DMU while the data of a particular subset of

DMUs, including DMUO, is changed. Since

either an increase of any output or decrease
of any input cannot worsen an efficient DMU,
data of the subset of DMUs are changed by
giving upward variations in inputs or giving
downward variations in outputs. Let P and U
denote the sets of indices of all the DMUs
that its data are changed and unchanged,
respectively.

P={j|dataof DMUj are changed}

U={j|dataof DMUJ- are unchanged}

Suppose that I and O denote the input
and output subsets respectively in which we
are Interested. In our research, we consider
the absolute variations of data according to
the following expressions:

For DMUj, jepP

{):c’).:x,.j+A,AZO, el O

X; =Xy, igl

and

{):zrl.zy,j—&&zo,reO 2
Yij = Vi re0

ForDMUj,jeU

)2,.]. = x,, foralli.

y,; =y, forallr.
where (") represents the adjusted data.
2.2 Increase of Inputs

Let us first consider the model for
change data in inputs only.

A" =Min A (M1)
s.t.lexkj + Z/lj(x,q. +A)<x, +A,
jeUu JjeP,jzo

Zﬂ'ixij S Xips i=12,--,m; i #k,
Jj#o

Z/ij,, 2y,, r=L12,s,

j®o

>a, =1

j*o

AA; 20, j#o0.

Suppose the optimization of (M1) is
completed for a specific index 4. Sufficient
and necessary conditions for preserving
efficiency of DM U, are shown as following.

Theorem 1. Given an increase as (1) in the
K" input only, the extreme efficient DMU,,

remains efficient if and only if Ae[0, A'],
*
where A is the optimal value to (M1).

This theorem show that the optimal
solution of (M1) provides the possible
maximum increase value for each individual
input to allow DMU ,, to be efficient when the

other inputs are held at constants. We turn to
consider the case there are more than one of
inputs changed simultaneously in the same
value. Assume each input i€/ is increased by
the same value A. We also want to determine
the possible maximum increase value of
those interested inputs. We consider the
following model extended from (M1).

A" =Min A (M2)
SLY Ax,+ D A(x,+A)<x,+Aiel,
jeU jeP,j=#o

D Ax,<x,, igl,

J#o

Z;L.I'y'j Zyra’ r=1,2,-~-,s,

j#o

Z’l./ =1,

Jj#o

A,/lj 20, j#o.

If we assume the problem is feasible,
then the theorem is easily derived.

Theorem 2. The extreme efficient DMU A
remains efficiency after the absolute change
in inputs as (1) if and only if Ae[0, A'],
where A* is the optimal value to (M2).

2.3 Decrease of Outputs

Now, tumning to consider the case of
changing data in outputs only, we utilize the
following model.



5 =Mind (M3)
s.t.le/yk, + Zl,‘(yk/ ~_5) = Yo _53

jel’ J€P,j#o0

Z’ljyr, Sy, r=12,-- 5 r#k,
Jj#o

lexij 2x,,i=12,---,m,

j#o

>4, =1

/*0

6,4,20, j#o.

Suppose (M3) is- maximized for a
specific index k. Sufficient and necessary
conditions for preserving efficiency of
DMU , are shown as follows.

Theorem 3. Given a decrease as (2) in the £®
output only, the extremely efficient DMU o

remains efficient if and only if €0, 5*],
*
where § is the optimal value to (M3).

The theorem illustrates that optimal
solution of (M3) provides the possible
maximum decrease value for each individual
output to allow DMU  to be efficient when

the other outputs are held at constants. We
turn to consider the case there are more than
one of outputs are changed simultaneously in
the same value. Assume each output reO is
decreased by the same value 6. We also want
to determine the possible maximum decrease
value of those interested outputs. We
consider the model extended from (M3).

5" =Miné (M4)
s.t.Z/l_,.yr,. + Zzlj(yrj -8)zy, —0,reO
jel’ JjEP.j#o
Zﬂ.,y” <y, re0,
jzo
S Ax, 2, =12
Jj#o
2 A =1
j#o

5,4, 20, j#o.

’m)

If we assume the problem is feasible,
then the following theorem is easily derived.

Theorem 4. The extreme efficient DMUO
remains efficient after the absolute change in
outputs as (2) if and only if o€[0, 5*], where
5* is the optimal value to (M4).

3. Numerical Example

The data sét contains 8 DMUs with two
inputs and one output is listed in Table 1.
Points of DMU,;, DMU ,, DMUj, and DMU,,

are BCC efficient while points of DMU,
DMU6, DMU7, and DMU8 are inefficient.
The input values of DMUZ, DMU3, and
DMU ; are increased simultaneously while

the others are unchanged.
Table 1 shows that the stability region
of DMU2 and DMU3 are 1.33332 and

3.33333 if we change input Xy, 2 and 2.33333
if we change input x,, and 0.79951 and 1 if
change input x ] and Xy simultaneously. The
stability region of DMUj is larger than the
stability region of DMU,. It implies that
DMU 3 is more stable than DMU, while
changing the value of inputs in DMU,,
DMU 3 and DMU 6 simultaneously.

Table 1. The stability region for changing

in D ad t D
DMU y; X, xy Stability regions®
1 1 1 12
A =133332, A .= 2.00000,
2 1 2 6 1 2
A =0.79951
A =3.33333, A'2= 2.33333,
3 1 4 3 1
A = 1.00000
4 1 12 1
5 1 2 8
6 1 7 4
7 1 6 7
_R 1 5 4
A It A‘Z’ and A" are the stability regions

corresponding to change input x P X and
change all inputs simultaneously. The error

tolerance is given by £ =10".
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Figurel. The stability region of DMU 5 for
increase of the value in input x ] of DMU >
DMU 3 and DMU 6 simultaneously.

Figure 1 presents the stability region of
DMU, and frontiers before and after the

change, while we changed the value of input
x; in DMU, DMU,; and DMU,
simultaneously. The maximum increment of
X, in DMUZ, DMU3, and DMU6 to preserve

DMU, remaining efficient 1s approximated

by A*=1.33332 (where the exact solution is
4/3). Therefore, DMU 5 fall in E’ and can be

expressed as the linear combination of
DMU 3 and DMU  after the change.

4. Conclusion and Discussion

The paper presented a new DEA
sensitivity — approach referring to the
non-linear models that may be considered as
the extension of super-efficiency models [5].
The new sensitivity technique provides the
stability of efficient DMUs by giving the data
variations on a subset of DMUs. In contrast
to the usual DEA sensitivity approaches
whose data variations are considered either
on the test DMU or on the allover DMUs,
this approach proposed the generalized
consideration that the uncertainty only affects
a subset of DMUs. In reality, the data of
DMUSs may be varied in the same direction

by the uncertainty. Sensitivity analysis
enhances the fine quality of the final decision.
Also, one can have the insight of the
comparison between DMUs.

Depending on some results of DEA
sensitivity analysis, we need to mention the
specifics about set P: (1) Since the efficient
DMUs is always stable if an inefficient DMU
is varied upward in inputs or downward in
outputs, one may assume that set P contains
the changed efficient DMUs only. For
simplicity, P can be reset as PNE, (i1) The
problem is similar to Zhu [8] if set P has only
one element, say DMU o Zhu’s method is

generalized by this approach that P could
contain DMU " and other efficient DMUs, (iii)
Suppose the reference set for solving DMUO
by the super-efficiency BCC models 1is
denoted by A. The problem is also similar to
Zhu [8] if P does not contain any one
element of A. Thus, the main problem we
employed is that the data changing on a set of
DMUs, containing the test DMU and some of
its reference points with respect to the
super-efficiency DEA  models. Zhu’s
approach [8] is the special case of ours.

Sufficient and necessary conditions are
provided for upward variations of inputs
and/or downward variations of outputs on a
subset of DMUs simultaneously, such that an
extreme efficient DMU remains efficient.
Instead of effort on the difficulties for
solving the non-linear problem, an algorithm
applied the simpler linear model to
approximate its optimal solution is also
provided here. Our model obtained the same
variations in all interested inputs and outputs,
which is not necessarily true for the
real-world applications. However, rescale all
inputs and outputs suitably could be used to
prevent this shortcoming. The above results
also hold for other basic DEA models.

In this approach, we have assumed that
the models we employed, that is (M1), (M2),
(M3) and (M4), were always feasible.
However, this assumption is not necessarily
true. The conditions for infeasibility of



super-efficiency models investigated by
Seiford and Zhu [14] are useful for our
proposed models. In accordance with Seiford
and Zhu [11], (1) the infeasibility of modified
super-efficiency models can be interpreted as
stability of the efficiency classification of
DMU, with respect to the changes of

corresponding inputs and/or outputs in a
subset of DMUs, and (ii) the DEA measure
of efficient DMUs for the BCC model is
more stable than that in the CCR model. In
fact, we could also employ the algorithm in
Seiford and Zhu [9] to determine the whole
stability region of the test DMU.

Although the stability region of a test
efficient DMU for absolute changes in the
data is identified, the values of data change
are not necessarily the same within set P. The
possible future extensions of the research
include: (i) changing data proportionally in a
subset of DMUs, (ii) changing different scale
in different input/output in a subset of DMU,
and (iii) other conditions for infeasibility,
etc..

Appendix
Let’s consider the following models.

A(t)=Min A (A1)
stY Ax, + > A (x, +t)<x, +Ajiel,

jel JjeP,j#o

Z’lixi/ <x,, i€l

j®o

Z/?'iyr/ 2 Yiwr ¥'= 1’2"”"?’

Jj®0

Z/L/ =1,

Jj*o

A A, 20, j#o.
A" =Min A (A2)

s.t. lex,.j Sx,+Ajiel,
jel
lejx” <x,, iel
jeUu
Zijr, Zy,.,r=12,-s,
jeU
>4, =1
jeu

A,/ij >0, jeU.

We will apply the ablve two models and
some properties related to these models to
develop an algorithm for approximating the

*

increase stability region A .

Property 1. Let A(z) be the optimal value to
(16). Then, A(?) is non-decreasing in ¢.

' *
Property 2. If < A . Then 1< A(t) <A .
*
Property 3. If > A . Then, = A(2).
% % *
Property4. A =>A .

Property 5. If /1].(0)=0 for all je P. Then,
A=A

An algorithm for approximating A is as
follows.
* %
Step 0. (Initialized) Solve (A2) to obtain A .
% %
Step 0.1. If A - is bounded, set upper
% %k
bound U=A . Otherwise, let U=M,
where M is a given sufficient large
number.
Step 0.2. Let lower bound L=0 and ¢ be the

*
error tolerance for estimating A .
Step 1. Solve (A1) with =(U+L)/2 to obtain

(40, A®). )
Step 1.1. If )?.(t)=0 for all je P thenset A =
A(?) and stop.
Step~ 1.2. If t<A(¢) then set
Otherwise, set U=A(?).
Step 2. If (U-L)< 2¢ then set A = (U+L)/2
and stop. Otherwise, go to Step 1.

L=A(2).

A bisection procedure is applied in the
algorithm for convergence. If A** is feasible
in Step O, A* must be feasible and its
a&proximation could be obtained. However,

A may occur infeasible or its value exceeds
a large number such that the test DMU tends
to be stable while data is changed in a
sufficient large scale. So, the upper bmﬂd U

is set sufficient large wvalue if A is



infeasible in Step O.

In the real-world

problems, one may identity that a test DMU
is stable if the stability of inputs is infeasible
or large enough relatively to the data range of
all DMUs.
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