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Abstract

The human potassium channel KCNQ4, expressed in the X enopus oocytes injected with
KCNQ4 cRNA and currents were recorded using the two-electrode voltage clamp
technique. The expressed current showed the typical KCNQ4 voltage-dependence, with a
voltage for half-maximal activation (Vy2) of —18 mV, and was blocked almost completely
by 0.2 mM linopirdine, a selective blocker of KCNQ4 current. Application of ionomycin
(0.5 uM) or the caffeine (1 mM) shifted Vi, by approximately —10 and — 7 mV,
respectively. lonomycin or caffeine has no effect on the endogenous current of oocytes.
These effects can be reverse by the addition of BAPTA-AM (0.3 mM), a
membrane-permeable calcium-chelating agent. We suggest that KCNQ4 current is
modulated by intracellular calcium directly can lead to the negative activation and the

negative resting potential found in adult outer hair cells.
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1. Introduction

KCNQ4 is expressed abundantly in the cochlea as well as in brain, heart and skeletal
muscle. Mutations in the gene for KCNQ4 underlie a non-syndromes hereditary hearing
loss, DFNA2. The channél is expressed in both inner hair cells (IHCs) and outer hair cells
(OHCs). KCNQ4 has been identified tentatively as the molecular correlate of an OHC
potassum current, termed lxn lxn is distinguished by an activation curve which
contributes to the large negative resting potential of OHCs. This activation does not match
that of KCNQ4 found in expression systems. The potential €liciting half-maximal
activation (Vi2) seen in activation curves in OHCs is variable but, in genera, very
negative, —80 mV in guinea-pig and —66 mV in mouse at post-natal day (P)12. In contrast,
Vi, for KCNQ4 in expression systems ranges from —10 mV in oocytes to —-32 mV in
HEK-293 cells. To parald findings on Ik, in OHCs and, in particular, that Ik , is sensitive
to elevated intracellular calcium, we aso describe the effects of Ca’*-dependent
modulation of KCNQ4 currents via camodulin (CaM) and calcineurin (CaN). The
universal sensor CaM is a small protein with four EF-hand-type Ca®*-binding sites, and
has been detected in hair cells. We describe here the effect of arise in [Ca?*]; on KCNQ4

currents and show that KCNQ4 current modulated intracellular calcium.

2. Materialsand M ethods

Molecular Cloning and Expression of KCNQ4-- After linearization of the KCNQ4-containing
PTLN vector with Hpal, capped cRNA was transcribed in vitro using the mMessage mMachine
kit (Ambion). Usually 5 - 15 ng of cRNA was injected into Xenopus oocytes previously isolated
by manual defolliculation and short collagenase treatment. Oocytes were kept at 17°C in
modified Barth” s solution (90 mM NaCl, 1 mM KCl, 0.41 mM CaCl., 0.33 mM Ca(NO:s)., 0.82
mM MgSOs, 10 mM HEPES, 40 mg gentamycin /1 [pH 7.6]). Two-electrode voltage-clamp
measurements were performed at room temperature 2 -4 days after injection using an
Axoclamp-2B amplifier (Axon instruments) and pClamp 9.0 software (Axon Instruments).

Currents were usually recorded in ND96 solution. Reversal potentials were determined from tail



currents after a 2 s depolarizing pulse to +60 mV and corrected for liquid junction potentials.

Data analysis used pClamp9 and Sigmaplot 8.0.

3. Resaults

3.1 Effect of ionomycin on the outward current of native Xenopus oocytes

The expressed current, although quite variable from cell to cell, was 20-70 times larger than
that in non-injected cells. Indeed, native Xenopus oocytes expressed endogenous K™ current
with an amplitude of no more than 0.2 uA at 0 mV (Fig.1B), linopirdine (200 uM) and

ionomycin (10 uM) had no effect on this endogenous current.

3.2 Effect of ionomycin on the KCNQ4 current expressed in Xenopus oocytes

To investigate the mechanism by which intracellular calcium influenced KCNQ4 currents,
ionomycin (0.5 uM) was added, at which the KCNQ4 currents at +30mV in Xenopus oocytes
increased by 40% (FIG. 2B; Fig. 3A). lonomycin also shifted the activation curve to more
negative potentials. After exposure, Vi, was — 28mV, a negative shift of 10 mV (Vy, of
control KCNQ4 current was — 18mV, Fig. 3B). BAPTA-AM (0.3 mM), a calcium-chelating
agent reverse the effect of ionomycin (Fig. 2C; Fig. 3A; Fig. 3C), Vi was — 18mV, suggest

calcium modul ate the KCNQ4 channel directly.

4. Discussion

To examine the mechanisms by which [Ca®']; could be having an effect, we studied the
possible by adding the ionomycin, caffeine and BAPTA to the bath solution. lonomycin
increased KCNQ4 currents significantly (by 40% at +30 mV). The activation curve before
and after application of ionomycin was fitted by Boltzmann function with voltage for
half-maximal activation of —18 and —28 mV, respectively. lonomycin do negative shift in
activation about —10 mV from control. BATPA-AM a membrane-permeabl e chelating agent
reverse the effect of ionomycin. The effects of BAPTA-AM showed intracellular calcium

modulate the KCNQ4 ion channel directly.



Although the calcium binding proteins calmodulin and calcineurin when activated by Ca*,
interact with KCNQ4 in the membrane and lead to channel inactivation. Calmodulin is an
ubiquitous Ca®* binding protein that controls many cellular events including the activation
of several proteins, enzymes and ion channels. It is certainly known to be present in OHCs.
Camodulin interacts with members of the KCNQ family binding to an 1Q domain motif on
the protein, either controlling the tetrameric assembly into the membrane or by direct
binding and conferring Ca®* sensitivity. It is unresolved whether the Ca?*/ calmodulin
complex or the Ca?*-free apocalmodulin form binds to this sequence. The simplest model
here compatible with the data is that Ca?*/calmodulin both binds to a site on the channel and
to a site on calcineurin to activate the phosphatase. The results show that calcium is
involved in the basal modulation of KCNQA4.
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Fig.1 lonomycin (10 uM) has not effect on the outward currents in native Xenopus oocytes.
(A) Control native outward currents (< 0.2 pA). (B) The application of ionomycin for 10
mins. Currents were dlicited by 4-s command steps from —80 to + 60 mV in 20 mV
increments, followed by a 1-s step to — 30 mV.
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Fig.2 Transient expression of the human voltage-dependent K+ channel KCNQ4 in Xenopus
oocytes. (A) Currents recorded from Xenopus oocyte cell injected with cRNA encoding
KCNQ4. Holding potential — 60 mV. Currents were dlicited by 1-s command steps from —80
to + 60 mV in 20 mV increments, followed by a 1-s step to — 10 mV. (B) 5 mins after the
application of ionomycin (0.5 uM). (C) 10 mins after the application the BAPTA-AM (0.3
mM). (D) Further application the caffeine (1 mM) after the BAPTA-AM.
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Fig.3 Effect of ionomycin on the I/V curves and activation curves of KCNQ4 channels. (A)
lonomycin enhances the KCNQ4 current and this effect is reversed by the addition of
BAPTA-AM (0.3 mM). (B) The activation curve before and after application of ionomycin
was fitted by Boltzmann function with voltage for haf-maximal activation of —18 and —28
mV, respectively. BAPTA-AM reverse the effect of ionomycin on the KCNQ4 channdl,
half-maximal activation was—18 mV.
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