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摘要

第 O 型 forkhead 轉錄因子(FOXO)家族可以調控許多細胞的功能如：代謝、細胞分化及細胞

凋亡等。在此研究，我們發現了斑馬魚的 FOXO5 基因與哺乳類動物的 FOXO 基因有高度

的相似性。FOXO5 的轉錄起始於受精後兩小時並且持續表現製程於階段。利用定位雜合實

驗，FOXO5 的表現於受精後 24 至 48 小時慢慢的表現在心臟區域而於腦部慢慢的消失。利

用微注射 FOXO5 專一性的反義核苷酸至斑馬魚胚胎會造成生長、細胞色素及血球生成被

抑制。被 AKT 蛋白質激酶磷酸化後，FOXO5 會停留在細胞質中。我們的實驗顯示斑馬魚

的 FOXO5 對於細胞色素及血色素的行成扮演一個重要角色。

關鍵詞：斑馬魚、FOXO5 基因、反義核苷酸



Abstract

Forkhead transcription factor subclass O (FOXO) family proteins regulate a wide range of

cellular functions such as metabolism, cell differentiation, and apoptosis. In this study, we

identified the zebrafish FOXO5 gene which shared high similarity to mammalian orthologs.

FOXO5 transcripts were found 2 hours post fertilization (HPF) and persistently expressed

thereafter. Using in situ hybridization, FOXO5 was observed dramatically increased in heart and

decreased in brain region during 24 to 48 HPF. Injection of zebrafish embryo with morpholino

antisense oligonucleotides against FOXO5 resulted in inhibiting of growth, pigment formation,

and erythropoiesis. Through phosphorylation by AKT leaded to cytoplasma retention of FOXO5.

Taken together, our results suggested that zebrafish FOXO5 may play an important role in

zebrafish pigmentation and erythropoesis.

Keywords: zebrafish, FOXO5, morpholino



Introduction

Fox class O (FOXO) proteins are a sub-group of Forkhead transcription factors and play an

important role in regulating a wide range of cellular processes such as cell cycle progression,

DNA damage/repair, apoptosis, oxidative stress responses, and metabolism (Accili et al. 2004,

Greer et al. 2005). In mammals, at least four FOXO subclasses of the Forkhead transcription

factors including AFX (FOXO4), FKHR (FOXO1), FKHR-L1 (FOXO3a) and FOXO6 were

identified and shown to be highly homologous with Daf-16, a regulator of longevity in

Caenorhabditis elegans, and which represents the mammalian orthologus of Daf-16 (Furuyama et

al. 2000, Jacobs et al. 2003). In C. elegans, the daf-2/age-1/daf-16, an insulin-like pathway,

controls the life-span extension (Vanfleteren et al. 1999). Previous studies have revealed that

growth factors regulate the sub-cellular localization and activity of the FOXO family mediated

through the PI3K/PKB pathway (Gan et al. 2005, Matsuzaki et al. 2005, Srinivasan et al. 2005).

PKB can phosphorylate FOXO1 at three PKB consensus phosphorylation sites including Thr24,

Ser256 and Ser319 (Gan, Zheng 2005). In the unphosphorylated state, these transcription factors

increased the expression of proteins such as p27 Kip1 (Dijkers et al. 2000), p130-Rb2 (Kops et al.

2002) and Bim (Stahl et al. 2002). Upon phosphorylation by PKB,

A previous report has demonstrated that each member of the FOXO family (FOXO1, FOXO3,

FOXO4 and FOXO6) shows a tissue-specific and developmentally specific expression pattern

(Furuyama, Nakazawa 2000, Jacobs, van der Heide 2003). The expression pattern of the three

genes was similar in embryos, whereas a distinct expression pattern was found in adult tissues

(Furuyama, Nakazawa 2000). FOXO1 mRNA is highly expressed in brown and white adipose



tissues and FOXO4 is expressed at a higher level in skeletal muscle while FOXO3 was highly

expressed in adult tissue rather than in embryo tissue (Furuyama, Nakazawa 2000). Recently,

Hoekman et al demonstrated a distinct spatial and temporal expression pattern of FOXO family

proteins (FOXO1, FOXO3 and FOXO6) in the embryonic and adult mouse brain using in situ

hybridization (Hoekman et al. 2006). FOXO6 was detected in E12.5 and was mainly expressed in

the hippocampus, the amygdalohippocampal area and the shell of the nucleus accumbens

(Hoekman, Jacobs 2006). FOXO1 and FOXO3 were found in E14, the former expressed in more

restricted regions such as the striatum and neuronal subsets of the hippocampus, whereas the

latter was transcripted in a diffused pattern throughout the whole brain (Hoekman, Jacobs 2006).

Furthermore, genetic analysis using transgenetic animals has revealed that each FOXO gene

plays a distinct role in development. Overexpression of constitutively active FOXO1 and

FOXO3a impaired tube formation and VEGF-induced cell migration in human umbilical vein

endothelial cells (HUVEC) (Potente et al. 2005). In addition, it has been reported that FOXO3a-/-

possesses a malfunctioned ovarian follicles due to deregulation of ovarian follicle development

(Castrillon et al. 2003). As a result of impaired vascular development, complete disruption of

FOXO1 mice is embryonically lethal, which indicates that FOXO1 may play a role in

angiogenesis (Hosaka et al. 2004). In addition, down-regulation of FOXO4 by siRNA increased

myocardin activity and smooth muscle cell differentiation, however, it was found that no

detectable phenotype defect in FOXO4-null mice compared to normal mice (Liu et al. 2005)

The super-family of Forkhead transcription factors consists of approximately 90 members,

which are expressed in an array of species ranging from yeast to human (Carlsson et al. 2002).



However, the role of Forkhead transcription factors in embryogenesis of the zebrafish remains to

be elucidated. Herein, the spatial expression and tissue expression of the zebrafish FOXO5 gene,

using RT-PCR and in situ hybridization, was investigated. FOXO5 was continuously expressed

during different developmental stages and all adult tissues with abundant expression in the brain

and retina. Knockdown of FOIXO5 by anti-sense morpholino oligonucleotide caused heme and

pigmentation was delayed in morphants.

Method and materials

Materials. All the chemical compounds were obtained from Sigma. The restrict enzymes and Taq

DNA polymerase were purchased from Promega Biosciences and Viogene, respectively. Control

and constitute activated AKT were kindly gifted from Dr. Chin-Wen Chi (Yang Ming University,

Taiwan). Dominant negative AKT was obtained from Dr. Chiung-Tong Chen (NHRI, Taiwan).

Fish. Zebrafish (D. rerio) AB strain was raised and maintained at 28℃ on a 14h light/ 10 dark

cycle according to previous described. Different develop stages were detected according to the

Zebrafish book (Westerfield 1995).

RT-PCR of zebrafish FOXO5. Total RNA was isolated from different stages and from a various

tissues using TRIzol Reagent (Invetrogen). The RNA yield and integrity was measured by

spectrophotometry and 1 % agarose gel electrophoresis, respectively. Five g of total RNA was

converted into first strand cDNA by Moloney murine leukemia virus reverse transcriptase

according to the manufacturer’s recommendations (Superscript II, Life Techonologies). Briefly,

Total RNA was annealed with 0.5g random primers in a total volume of 12 l at 70℃ for 5 min.

Seven l of reaction mix (4 l of 5 X reaction buffer, 1 l of ribonuclease inhibitor, and 2 l of



10 mM dNTP ) was added to the primer/RNA complexes and incubated at room temperature for

5 min. After annealing, 1l of reverse transcriptase was added and incubated at 42℃ for 60 min.

The reaction was terminated by heating at 70℃ for 10 min.

Using 1 l first strand cDNA as templates, PCR amplification was performed with primers

(sense: 5’-CGTATAGGAGATGCTGGCAG-3’ and anti-sense:

5’-ATGCAGTGAACGGTAGCTCTC-3’) and program as: denaturation at 95 for 5 min followed

by 35 cycles of 94℃ for 1 min, 50℃ for 1 min, and 72℃ for 1 min and the final extension at 72

℃ for 5 min. The 400bp PCR products were separated by 3% agarose gel and visualized by

ethidium bromide staining. Negative control using water instead of cDNA was concomitantly

performed. Amplification of elongation factor will be used as an internal control by sense primer

(5’-GCTCAAGGAGAAGATCG-3’) and anti-sense primer (5’-TCAAGCATTATCCAGTCC-3’).

Whole mount in situ hybridization and morpholino injection. DNA fragment corresponded to

nucleotide 3741 to 4140 was PCR amplified then subcloned into pGEMT-easy vector (Promega)

and transformed into JM109 competent cells. Colonies with insert were selected for producing

probes. Sense and anti-sense riboprobes for FOXO5 was made from Pst I-digested linear DNA

using in vitro transcription by T7 RNA polymerase in the presence of digoxigenin-labeled UTP.

Whole-mount in situ hybridization was performed as previous described (Westerfield 1995).

Morpholino injection. Morpholino (MO) antisense oligonucleotide (Gene-Tools) targeted against

FOXO was designed as following sequence: 5’-CCAGGGTTGTCTCTGCCATCTTTCC-3’

corresponded to -6 to +19 of FOXO5. The MO was dissolved in 1 X Danieau solution containing

0.5% phenol Red and injected into embryos at 1 to 2 cell stage.



O-dianisidine stain. Embryos were stained with staining solution (0.6 mg/ml o-dianisidine, 10

mM sodium acetate, pH 5.2, 0.65 % H2O2, and 40 % ethanol) at dark room for 15 min followed

by washing with PBS to stop reaction.

Cell culture and transfection. Human lung cancer cell line H1355 was maintained in RPMI

medium supplemented with 5% fetal bovine serum. Transfection was performed using

Lipofetamine (Invitrogene) as manufacturer’srecommendation.

Plasmid construction. The full coding region of FOXO5 was amplified using primers (forward:

5’-CTCGAGAGATGGCAGAGACAACCCTG-3’ and reverse:

5’-GGATCCCCATCAGCCTGGCACCCAAC-3’) and zebrafish cDNA as template following

conditions as: 30 cycle; 90℃ for 30 sec, 50℃ for 30 sec, and 72℃ for 1 min. The amplified

fragment was ligated into pGEMT-easy vector (Promega) and transformed to JM109 competent

cells. Plasmid from positive clone was digested with Xho I and EcoR I and subcloned into

pEGFP-c1 vector to construct the pEGFP-FOXO5 fusion protein. All the plasmids were

sequenced from both directions by ABI 3100 DNA sequencer (MISSION BIOTECH).

Sub-cellular localization of GFP-FOXO5. Human H1355 cells were co-transfected with wild

type, dominant negative or constitutive active form of AKT and pEGFP or pEGFP-FOXO5

fusion protein using Lipofetamine (Invitrogen) according to the manufacturer’s recommendation.

Forty-eight after transfection, the sub-cellular localization of GFP or GFP-FOXO5 was

determined using fluorescent microscopy.

Results and Discussion



Identification of the FOXO5 zebrafish gene

FOXO family transcription factors can regulate a wide range of gene expression including

cell cycle-related genes, DNA repair genes, and energy metabolism genes (Accili and Arden 2004,

Greer and Brunet 2005). FOXO family proteins have been isolated from fruit fly (Kramer et al.

2003), Xenopus (Pohl et al. 2004), and vertebrate (Anderson et al. 1998, Biggs et al. 2001,

Hosaka, Biggs 2004) To address the role of FOXO5 protein in zebrafish development, we

attempted to isolate zebrafish FOXO5. An in silico method was employed to identify the FOXO5

gene in zebrafish. Firstly, the human FOXO1 protein sequence was selected and a BLAST search

using the TBLASTN program for sequence similarity analysis was performed. One EST

(AF114262) clone containing the full length FOXO5 was obtained. The zebrafish FOXO5

consists of 4547 bp, which encode 651 amino acids and which shares 37%, 57%, and 31%

homology to mouse FOXO1a, FOXO3a and FOXO4, respectively. The forkhead domain was

located in amino acids 127 to 212 and displayed 75%, 77% and 75% homology to mouse

FOXO1a, FOXO3a and FOXO4, respectively. Based on homology, it was speculated that the

function of FOXO5 might be more similar to FOXO3a. Unlike mammalian orthorlogs, two

putative AKT phosphorylation sites were found following a Scansite search and were localized

within T30 and S223, whereas only the T30 residue fit the 14-3-3 binding motif (RXRXXT/S).

Expression patterns of zebrafish FOXO5 transcripts in different development stages and adult

tissues

To determine the expression pattern of FOXO5 during zebrafish development, total RNAs,

derived from 10 different stages (2–96 hour post fertilization) of zebrafish, were converted into



cDNA and PCR amplification was performed to determine the temporal expression patterns of

FOXO5. As shown in Fig. 1, mRNA of FOXO5 was detected 2 h after fertilization and was

substantially expressed thereafter, which suggests that the FOXO5 gene was maternally

deposited.

To investigate the expression pattern of FOXO5 in zebrafish, RT-PCR and whole mount in

situ hybridization were performed to determine the tissue and spatial expression patterns of

FOXO5. Unlike the mammalian orthologues, which is expressed in more restricted tissues

(Furuyama, Nakazawa 2000, Jacobs, van der Heide 2003), the zebrafish FOXO5 was

ubiquitously expressed in all adult tissues with the highest level of expression observed in the

brain and retina (Fig. 2). Compared to the mouse FOXO family, distinct expression patterns of

different FOXO numbers in different species was observed. Higher expression levels of FOXO5

detected in the brain region was similar to that observed with mouse FOXO3a, whereas modest

detection of FOXO5 in the heart was similar to mouse FOXO1. Nevertheless, all three FOXO

genes remained undetectable in the mouse ovary, however, FOXO5 expression was detected in

ovary tissue in the zebrafish.

To further define the exact expression patterns of FOXO5, whole-mount in situ

hybridization was performed using anti-sense ribonucleotides, where the probe corresponded

with nucleotides 3741 to 4140 of FOXO5. FOXO5 transcripts were found intact throughout the

body in 12 hpf (Fig. 3). In 24 hpf embryos, FOXO5 mRNA transcripts were detected

predominantly in the midbrain, hindbrain, and muscles. In 36 hpf, FOXO5 appeared in the

anterior tectum, telecelophon, midbrain, somite, and was observed in the heart. However, FOXO5



was strongly expressed in the heart and aorta region, and was detected in brain regions in 48 hpf

embryos. Interestingly, our data obtained from whole-mount in situ hybridization indicated that

FOXO5 expression patterns alternated during the development stage.

Knockdown of FOXO5 delayed erythropoiesis

Morpholino (MO)-mediated blocking gene translation has been widely used to determine gene

function in vivo (Corey et al. 2001). To investigate the role of FOXO5 in zebrafish development,

a microinjection of MO anti-sense oligonucleotide was used to knockdown FOXO5 protein

translation. Embryos that received MO (8 ng) developed abnormally compared to the normal

phenotype. Based on the severity, the phenotype of morphants was divided into two categories.

Severe type: at 48 hpf, growth retardation, small and dark brain, small eyes, pericardial edema,

pig tail, disruption of somite formation, and reduced melanocye in body and retina was observed

in the treated embryos. These morphants were almost died at 72 hpf. Mild type: the phenotype

was like severe type except brain region was transparent and bent trunk instead of pig tail. At 72

hpf, reduced melanocytes number and differentiated red blood cells were found in morphants

treated with 8 ng morpholino. Using o-dianicidine staining, reduced heme staining was observed

in morphants injected with MO at 48 and 72 hpf (Fig. 4).

Several previous reports have demonstrated that FOXO family proteins are involved in

angiogenesis and vascularization (Furuyama et al. 2004, Potente, Urbich 2005). Castrillon et al

have shown that abnormal heamatologic defects such as mild compensated anemia and

reticulocytosis are observed in FOXO3a null mice (Castrillon, Miao 2003). An increasing

expression and activity of FOXO3a was observed during erythroid differentiation (Bakker et al.



2004). In addition, constitutively activated FOXO3a facilitated erythroid differentiation, but

reduced FOXO3a expression inhibited differentiation (Bakker, Blazquez-Domingo 2004). Using

the microarray assay, Bakker et al indicated that the B cell translocation gene 1 (BTG1) was the

direct target gene of FOXO3a and played an important role in erythroid differentiation (Bakker,

Blazquez-Domingo 2004). Based on our observation, zebrafish FOXO5 may involve in

erythropoiesis.

Phosphorylation by AKT altered the sub-cellular location of FOXO5

Previous studies have indicated that phosphorylation of specific serine or threonine site by

AKT contributed to the regulation of the sub-cellular localization of FOXO family protein in

mammalian cells (Gan, Zheng 2005, Jacobs, van der Heide 2003, Matsuzaki, Ichino 2005). To

address whether the activation of AKT leads to the translocation of zebrafish FOXO5, the human

lung cancer cell line H1355 was co-transfected simultaneously with various forms of AKT and

pEGFP alone or pEGFP-FOXO5. The GFP alone protein was distributed in both nuclear and

cytoplasmic compartments in the presence of dominant negative or constitutively activated AKT.

In the presence of dominant negative AKT, GFP-FOXO5 was expressed throughout the whole

cell whereas GFP-FOXO5 was localized predominantly in the cytosolic compartment in the

presence of constitutively activated AKT. Moreover, apoptotic bodies were found in cells

transfected with dominant AKT. These results suggest that, similar to the orthorlogues of humans

or mice, the activation of AKT is sufficient to induce cytosolic localization of zebrafish FOXO5.

These data suggest that external signals may negatively regulate the biological function of

FOXO5 via the PKB pathway.



Taken together, our results indicate that the zebrafish FOXO5 gene may play an important

role both in pigmentation and erythropoiesis and may be negatively regulated by AKT

phosphorylation.
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Fig.1. Expression of FOXO5 in different development stages of zebrafish. Total RNA derived

from indicated stages of zebrafish was converted into cDNA and subjected to RT-PCR with

specific primers for FOXO5. Elongation factor was used to normalize the amount of cDNA.



Fig. 2. Tissue distribution of FOXO5 in adult zebrafish. RT-PCR was performed using RNA from

indicated tissues. Negative control was included using water instead of cDNA. FOXO5 was

abundantly expressed in brain and eye and weakly expressed in heart.



Fig. 3. Whole-mount in situ hybridization of FOXO5 during zebrafish development stages from

12 to 48 HPF. (a) 12HPF (b) and (c)24 HPF(d)36 hpf and (e)48 hpf. MB denoted midbrain, HB

denoted hidbrain, sm denoted somite, AT denoted anterior tectum, TE denoted telecelophon, and

H denoted heart.



Fig. 4. O-dianisidine stain of morphants. Zebrafish embryos received 8 ng morpholino (a) and (b)

wild type was subjectd to o-dianisidine stain.



Fig. 5. Nuclear export of FOXO5 by AKT phosphorylation. H1355 cells were transfcted with (a)

pEGFP/control AKT, (b) pEGFP/ dominant negative AKT, (c) pEGFP/ constitutive activated

AKT, (d) pEGFP-FOXO5/control AKT, (e) pEGFP-FOXO5/ dominant negative AKTor (f)

pEGFP-FOXO5/constitutive activated AKT. After 48 hours, cells were pictured by fluorescent

microscopy.


