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Abstract—While conventional learning theory focus on train- of the network. Then, the resultant network model is imple-
ing a fault free neural network model, fault tolerant learning aims  mented in an FPGA. Imagine that one node is accidentally

at training a neural network that is able to tolerate anticipated 4aath due to component failure. No doubt, the performance

fault. This paper presents a survey on the previous work done for . . .
fault tolerant neural network and proposes an objective function ©f the implemented NN will be drastically degraded.

based framework for fault tolerant learning. In accordance with This phenomena has been mentioned in many papers, such
the objective functions derived for different types of network as in [41], [51]. A NN of good generalization might not be
faults, algorithms for attaining a good fault tolerant neural gple to tolerate network fault. However, not much theoretical

network have thus been developed. By comparing those objective ; ; ; :
functions for fault tolerant learning with weight decay, it is found work has been reported in the literature relating those issues

that training by adding weight decay can also improve the fault N regard to generalization and fault tolerance. Many questions

tolerance of a neural network. are left to be answered. Let us point out a few.
Keywords : Fault Tolerance, KL Divergence, Learning Theory « In conventional learning, training a NN is determined by
an objective function which the learning algorithm apply.
. INTRODUCTION For fault tolerant learning, not all existing algorithms are

defined based upon objective functions. Some of them are
designed by heuristic. Is it possible to find the objective
functions for them ?

Algorithm like weight decay used to be applied in training
a NN of good generalization has also been applied in
training a NN of good fault tolerance. Does it mean that

In conventional learning theory, the primary objective of a
learning algorithm is to attain a neural network (NN) of least
mean prediction error, i.e. good generalization. To accomplish_
this, one approach is by the idea of adding regularizer [28],
[27], [33], [34] to penalize the weights’ magnitude. Another
approach is by the idea of pruning [20], [25], [29], [27], : . :
[44], [39]. In which a NN is trained by a learning algo- weight decay should be an universal technique for NN

. ' . . learning ?
rithm, and then redundant weights are identified and removed., If the ogbjective functions are found. what are their sim-

The purposes of weight penalization and redundant weights ;. isies “gifferences and relationships with those defined
removal are essential the same — to reduce the complexity in conventional learning ?

of a NN. In accordance with the statistical learning theory _ o . ] o
1 over-complexity can always lead to poor generalization This paper initiates the first step by proposing an objective

(over-fit). Therefore, one can see that the primary focus {Hnction based framework for fault tolerant learning. The pur-
conventional learning theory is to seek for a NN that is dt0S€ iS to provide a partial answer to the first and the second
minimal complexity. questions. With the objective function derived for different

All these theories apply well to any problem, if the traineyPes Of fault models, comparison can be made amongst
NN is hard-coded in an application software that is running §#¥iSting fault tolerant training methods and regularization-
a computer. How about the trained NN is needed to be embédsed training methods. .
ded in a digital hardware, like FPGA, for real time application, The rest of the paper will be organized as follows. In
Component failure, low precision floating point representatidf® next section, a background survey on the research works
and thermal noise will then affect the actual implementatidi¢'ated to fault tolerant NNs will be elucidated. The proposed
of such a trained NN. The discrepancy between the hardwai@mnework is presented in Section 3 to Section 5. The conclu-
implemented NN and its computer simulated counterpart wiion is presented in Section 6.
lead to different types of faults to the network, such as
accidentally node die, weight perturbations and etc. All these Il. BACKGROUND SURVEY
faults can also affect the performance of ihglementation
of a NN.

Consider that a trained NN has gone through the pruningConsider a Madaline is with threshold logic output neuron,
step. All its redundant nodes must have been removed. ABtevensoret al [48] gave a comprehensive analysis on the
one of reminding node is important to contribute to the outpptobability of output errodue to different type of noises, such

as input and weight noise, both additive and multiplicative.
1please refer to Chapter 9 in [8] and Chapter 7 in [21] For multilayer perceptron, Choi and Choi [15] from statistical

A. Research works on the analysis of FTNN



TABLE |

RESEARCH WORKS ON THE ANALYSIS OF A FAULT TOLERANTNN.

multilayer perceptron. In their algorithm, a weight magnitude
control step has been added in each training epoch. Whenever

Ref.  Fault NN Work the magnitude of a weight has reached a predefined upper

Hg{ ﬁny weight noise X/Iadallne OPrtOblil:lty of _ttJ_UF{)ut error limit, it will not be updated unless the update can bring its
ny noise ny utput sensitivity measure : : :

[43]  Any noise Madaline  Precision requirement magnitude down. Consider that the noise effect can eventually

[10] Mul. weight noise  RBF Generalizaton ability be cancelled out at the output node if all the weight values

%4] //;\ny noi,s'f1 o T\QAEIB_I; 8“?’”{ SenS!Eivi,:y matrix are equal, Simon in [47] suggested a distributed fault tolerance
ny weignt noise utput sensitivity measure H H H H

a1 - i Relationship between FT, learning a_tpproach for o_ptlmal mterpolatl_on net and formulat_ed

' ' generalization and VC dim. the learning as a nonlinear programming problem, in which

Fll]g] /Xny We!gm noise l'\:/lrléP EGeneraIIZ_e:_tIQtn ability training error is minimized subjected to an equality constraint

ny weignt noise rror sensitivity measure

on weight magnitude. Extended from the work done in [10],

@ Functional net Parra and Catala in [38] demonstrated how a fault tolerant RBF
network can be obtained by using a weight decay regularizer
[33]. From model sensitivity point of view, Berniest al
sensitivity approach to derive differeatitput sensitivity mea- developed a method called explicit regularization to attain
suresof a network due to different type of noise. Consides MLP [3], [5] or RBF network [6] that is able to tolerate

a Madaline is with sigmoidal output neuron, Piche in [43ultiplicative weight noise.

followed an approach from signal to noise ratio (SNR) and

came up with a set of measures for the.output §ensitivi@y_ Algorithms for dealing with node fault

of a network with respect to different noises. Using such

SNR, a weight accuracy selection algorithm is developed andT0 deal with node fault, those learning algorithms developed
applied to determine the precision requirement in hardwagan be classified into two approaches : (1) adding heuristics
implementation. Townsend and Tarassenko [54] consideredrandom fault or network redundancy) during training and (2)
radial basis function (RBF) network with multiple outputs anéPrmulating the training as a nonlinear optimization problem.
derived the output sensitivity in matrix form for an RBF thatis Adding heuristic in the training algorithm is essentially to
suffered from perturbations in input data, radial basis functig@nforce the internal representation ability of a NN distributed
centers and output weights. widely within the hidden nodes or weights. So that, no single

As output sensitivity is just an indirect view point tonode or single weight is particularly important and then
understand the effect of NN due to noise, the actual effg@ndom removal of a node or a weight will only gracefully
of noise to the performance of a NN cannot be identifiedegrade the performance of the network. For this approach,
easily. A more practical view point to the problem is from itsnjecting random node fault alone [45], [9] or together with
actual performance — the generalization ability. Catala afidndom node deletion and addition [14] during training are
Parra proposed a fault tolerance parameter model and studi#d techniques that have demonstrated succeed in attaining
the performance degradation of a RBF network if the RBfault tolerance. Adding network redundancy by replicating
centers, widths and the corresponding weights are corruptedltiple hidden layers after a NN has been well trained [18],
by multiplicative noise [10]. Bernieet al extended from Choi [40] is another one. Under the same scenario, limit weight
& Choi statistical sensitivity approach [15] and derived theagnitude either by adding weight decay regularizer [14] or
error sensitivity measuréor MLP [2], [4], RBF network [6] hard bounding the weight magnitude to a small value during
Similarly, Fontenla-Romeret al derived theerror sensitivity training [11] are another two techniques that can succeed in
measurefor functional net [19]. obtaining a fault tolerant NN.

Noise can be harmful to a NN. But sometimes, it can be Another approach is to formulate the learning directly as
beneficial. Murray & Edwards [36] investigated and founa constraint optimization problem. Neti et al [37] defined
that adding multiplicative weight noise (and other kinds dhe problem as a minimax problem, in which the objective
noise) during training can improve the generalization abilitiunction to be minimized is the maximum of the mean square
of a MLP. While noise during training can improve theerrors over all fault models. Deodhare et al took a similar idea
generalization ability of a NN, Bishop [7] showed that addinign [16] by defining the objective function to be minimized
small additive white noise to a NN during training is equivas the maximum square error, over all fault models and all
alent to Tikhnov regularization. Jiret al [24] noticed that training samples. As the computational cost in solving these
adding multiplicative weight noise not just can improve theminmax problem could be severe for large number of hidden
generalization ability, but also can improve the convergenogits, Simon & El-Sherief in [46] and Phatak & Tcherner in
ability in training a recurrent NN. [42] formulated the learning problem to a simpler unconstraint

i . . o ) . optimization problem, in which the objective function consists
B. Algorithms for dealing with multiplicative weight noise of two terms namely the mean square errors of the fault-

While lot of works have been done to understand the effeftee model and the ensemble average of the mean square
of noise to the network performance, various training methodsrors over all fault models. Although solving unconstraint
aiming to improve the fault tolerant ability of a NN have beepptimization problem is a lot more easy compared with a min-
developed. Since the effect of a multiplicative weight noisenax problem, these formulations are still suffered from sever
is proportional to the magnitude of the associated weigltpmputational burden when their formulations are extended
one intuitive approach is to control the magnitude of th® handling multiple nodes fault. In view of the lacking of
weights to small values. Cavalieri & Mirabella in [11] havea theoretical framework and the difficulty in extending the
proposed a modified backpropagation learning algorithm fekisting approaches to multiple nodes fault, Lewetgal in



TABLE Il

RESEARCH WORKS ON THE ALGORITHMS DEVELOPED Problem
Ref. Fault NN I[dea ‘
[37] Single node fault  MLP  Minimax Probleln Unknown System
[9], [45] Node fault MLP  Injecting random node fault
_ _ during training ) Fault Tolerant
[35] Weight noise MLP dﬁﬂggn%re\{}lr?ilr?gt noise Estimated Model Leaning Thoery
[14] Weight noise & MLP  Weghit decay Convention F i
[18], [40] Node fault MLP  Adding redundancy Learning Theory
[16] Single node fault MLP  Minimax problefn Implemented Model
[112] Node fault MLP  Weight magnitude bounding
[38] Mul. weight noise  RBF  Apply weight decay algo.
[3], [B] Mul. weight noise  MLP  Explicit regularization Estimated Model: Fault-free REF
[47] Weight noise N Nonlinear prograrh
[42] Single node fault MLP  Nonlinear progré&m ;
[30] Mul. nodes fault RBF  Fault tolerant regularizer Implemented Mogel: Faulty REF
[50] Mul. weight noise  RBF  Apply KL divergence
a Interpolation net Fig. 1. Framework of fault tolerant learning.

! ming{max; 1/Nzk 1k — f(zx,0)6))2}
2Apply weight decay algorithm with random node fault injection during

training B. MeasureL(M|D)

ming {max; maxy (yx — (:Bk,g\@)) } . )
4 Minimizing training error subject to equality constraint on weight To search for the best modgH, one would need to define

magnitude ) » a measure to evaluate the closeness between two models.
UN YL e = Fan,0)? + ol D den, N > -1~ In convention learninggeneralization abilityand a poste-
f(xx,010))> rior probability are two common measures being applied to
measure the closeness between a mgdebnd the unknown
model M.

a) Estimation: For a set of dat& and let.J(M|D) be

[30] and Sum in [51] have attempted to these problems liye measure, the besstimated modeM will be defined by
devising an objective function for fault tolerant learning.

A= i D)}. 1
M =arg min {J(M|D)} @
[I. OBJECTIVE FUNCTION BASED FRAMEWORK b) Implementation:While in FTL, the focus is on the
_ implemented model. The bestplemented modelM; is
A. Notations defined as the one minimizing the expectation JgfM|D)

. overQ
Let M, be the unknown system to be modeled. The input

and output ofM, are denoted by: andy respectively. The LM|D) = / J(M|D)P(M|M)IM. (2)
only information we know aboutM,, is a set of measurement MeQm

data D, where D = {(zy,yx)};_,- Making use of this M; = arg min {L(M[D)}. @)
data set, an estimated modaHl that is good enough to MeQnm

capture thegeneral behavioof the unknown system can beThe |earning algorithm that can search for thé; is called a

obtained. For many real-time applications, thedmodelM  fault tolerant learning algorithm

will furthermore be mapped onto a hardware implementation,

like FPGA or DSP chip. As it is known that a hardware IV. ESTIMATED MODELS2

implementation of a modeWt can never be perfect. We denote To clarify the concept ideas about estimated model set, let

this inaccurate implementation 0¥l by M. The conceptual us take RBF networks as an example. Consider the estimated

difference amongsM,, M M is shown in Figure 1. Finally, model is an RBF network consisting df/ hidden nodes.

we let() be the set of models in whicht and M are defined. In which only the output weights can be tunable but the
basis centers and widths are fixed, an RBF network can be

In conventional learning theory, it is assumed that tH@rmulated as u

implementation of a modeM, is fault-free. ThereforeM is Ze"b‘

equal toM. In such case, the learning algorithm for obtaining ¢

the best implemented model is basically the same as the

learning algorithm for obtaining the best estimated model. where ¢;(z) for all ¢ = 1,2,---,M are the radial basis

In FTL, such assumption is not existed. An implementatioiinctions given by

of a modelM,, denoted byM, is defined as a random model (z — ¢;)?

probabilistically depended on the model. The set of models oi(x) = exp <—Z) , (4)

in which M can be defined is denoted Biy. Clearly,Q ¢ C 7

Q. The conditional probability is denoted B(M|M), which ¢;s are the radial basis function centers and the positive

is depended on the property of the fault model concerned.pirameters > 0 controls the width of the radial basis

could be very complicated if multiple fault models co-exist. functions.



Fork=1,2,---,N If there are only finite number of possible faulty models, the
objective function defined in Equation (15) would be given by

Mo+ yk = f(or) + ek, (5)
where (24, yx) is the k" input-output pair that is measured LOD) =Y J(OD)P(0]6)d 17)
from an unknown deterministic systerfiz) with random 0€Q
output noisee,. To model the unknown system, we assu ; ;
that f(x) can be realized by an RBF network, i.e. mjhe set of faulty models is depended on the estimated model
M One should note that the best estimated model (i.e. the fault-
Moy = Zeiqbi(xk) + ep (6) free model) obtained either by Equation (11) or Equation (12)
i=1 are the same because
~ e)s 7 : 1
6’“ N0, Se) ) arg min {~P(D|)} = arg min {~log P(D6)}.
forall k=1,2,---,N. S. is known in advance, a modgi beR VER
in © can indeed be represented by &fvector, However, for fault tolerant cases, there will have no such
0= (61,00, ,00)7. guarantee that
The model sef? is isomorphic to anV/-dimension Euclidean arg min {_/p(p|§)p(§9)d§}
space,RM. 9ERM

The best estimated modglt is thus representeé. Equa- is the same as
tion (1) is rewritten as follows :

j_ ; —log P(D|0)) P(8|0)dd ¢ .
H—argerenll%r}l {J(6|D)}. (8) arggrenll%n {/( og P(D| )) (016) }
Here J(6|D) can be defined in one of the following forms. The same reason applies to Equation (13) and Equation (14).
1) Sum Square Errors (SSE) : Apart from defining an RBF network as in Equation (7),
one can also define the estimated model in other forms. For
1 Y ) instance,
JOID) = 5 > (e — @ 0) () y
k=1
2) SSE with Regularizer (Weight Decay) : ve = bt geiqsi(xk) + ek (18)
. ex ~ N(0,S.), (19)
J(0|D) — f(x,0))* + 2070, (A >0).
61D) N Z Yk g ( ) for k =1,2,---, N. For a givenS,, the estimated model set
(10)  will be isomorphic to therRM*! space.
3) Likelihood Probability : If we assume that the values @fs and o in the M

basis functions are not predefined, an RBF model will be

J(0|D) = —P(D6). (11) parameterized by af@M + 2)-vector,
4) Log Likelihood : (00,01, Ont, 1 Core - Cars @)
J(0|D) = —log P(D|0). 12
(6D) og P(DI6) (12) The estimated model sé? will thus be isomorphic to the
5) A Posterior Probability : R*M+2 gpace.
J(0|D) = _w. (13) V. IMPLEMENTED MODELS Q4

) N Recall that an implemented model @¢#1 is a model, in
6) Log A Posterior Probability : which part of its structure is faulty. In this section, three typical
_ _ fault models will be introduced including (1) the multiplicative
J(OID) = —log P(D|0) — log P(6). (14) weight noise (2) single-node fault and (3) multiple-nodes fault.
The probability P(9) which appears in Equation (13) andSimilarly, we use RBF network as an example for illustration.
Equation (14) is the\ Prior distribution of§. o ) ) )
The best implemented modeit; is thus represented,. A. Multiplicative weight noise witl/(6|D) = SSE

Equation (2) can be rewritten as follows : Mulplicative weight noise exists whenever a weight is
. . encoded in a low precision binary form. In order not to divert
LOD) = / _ J(O|D)P(0]0)do (15) the focus of this section, the exaplination of this effect is
R €00 presented in Appendix A.
0y = arg 921}%%1 {L(O|D)}. (16) Using the model described in Equation (55), an implemen-

tation of a modeb (denoted byd) can be defined as follows :
The integration is taken over th@" space. The probability -
P(0]9) is depended on the fault model concerned. Note that i = 0i+bibi (20)
this probability is not the same as tAePrior probability P(6). Bi ~ N(0,Sp), (21)



8=(01,1) S,=001

It is clear that, thos@s with high probability are clustered
aroundd. If we restrict thef only those withP(9|6) larger
than a small positive number, the best implemented model
can be re-defined as follows :

D) = /éGQTJ(§|D)P(§|9)d§ 28)
0, = argerenli%r}w {L"(6|D)}, (29)

whereQj = {0|P(9|6) > 5}. The computation complexity for
f; can be largely reduced. This is particularly advantageous
when the dimension of is large.

Fig. 2. For multiplicative weight noise case, the conditional probabilit?' Multiplicative weight noise With7(0|D) = —log P(D\f))
P(8]9) for 6 equals to(0.1,1)7. For RBF, P(yx|zk, 3,0) is given by
1 (yr — Z%l i(zx) (1 + Bi)0:)*
forall i =1,2,---, M. In other word ——exp | — = (30)
9~y ) ) 27TS5 ( 2Se
1 (2 .
P(Bi) = 5rg, P 28, Vi=1,--.M. (22) for all k = 1,2,---,N. Putting the definitions of?(3;) in
a Equation (22) and’(y|z, 3, 6) in Equation (30), and integrate
Let @ = (01,0o,---,0r)T and B = (By, B2, -+, Bur) 7T, over all possible3, we have the distribution
0 = 0+ A0)B, P(yi|zk, 0)
A(0) = diag{8;,0s,---,0u).
. ) 9100, 02, O = [ Ptk 5.0)P(3)03
P(6]0) ~ N (0, S5.A%(0)). (23) _ 1 . (_ (e — ¢T(a:k>9>2> (31)
An example of P(6]¢) is shown in Figure 2. Herd — 2mS (x, 0) 25(xx, 0)
(0.1,1)" and the weight noise varianc®; is 0 01. forallk=1.2..-. N.
One should note that,0 € RM, andQy = Q = RM. For ’ ’
J(6|D) is sum square errors, S(x,0) = Sc+Ssp" (x)A%(0)¢(x) (32)
N M
1 _ 2 2
£0D) =53 [ = 1w D) PEOD. (28 = S+ 83 otk (33)
k=1"9€ =

Consider the transition probabilit(|0) as defined in Equa- € likelihood probability will be given as follows
tion (23), it can be reduced to the following explicit regular-

N

ization form [3]. | / Plyelze, 6,0)P(60)d6  (34)
1 N 1 N —
LOD) = > (yx— f(xx,0)) +550" | = 0, N

2l St W S ) [1 [ Pions.00P3as. (@)

where G(xy) is a diagonal matrix defined as follows : P

For RBF network with predefined basis function centers and . gpy — _ lo / d3 (36
WidthS,@I is giVen by ( ‘ ) Z g yk‘mkvﬂv ) (/8) ﬂ ( )

The £(0|D) can then be written as follows :

O0r = (Hy + SpQq) <N > ykd(k > (27) = 210g27f+ *Zlogs Ty, 0
where N T 2
a +% ¢ %I;)e) @7
ks
Hy = NZM%W (zk)
k=1 Hence,d; can be obtained by
¢ 0 - 0
0 g2 -+ O 1 Y 1 & 1 X (g — o7 (z1,)0)?
Qg = : :NZ:G(xk) argrneln{m;ng(xk, 2 ZIW .

: k=1
0 0 - gm (38)



A node will be fault is abouy /M probability.

l—q if0=0
i M ifh=6_
P(010) = i ' (45)

For J(0|D) is defined as the sum square errors,

L(6|D) = (1 — q)J(6|D) + ZJ 0_|D). (46)
e Norma Node e Faulty Node
Fig. 3. Single-node fault NN models. For a network /af hidden nodes, In which,
th eM ible single-node fault models.
ere ar possible single-node tault moaels J(9,1|D) _ J(9|D) + 92gZ
By using the idea of gradient descent, a training algorithm +20i Z Yk — )0)di(xk) (47)

can thus be derived. Taking the gradients of the 2nd and the
3rd terms in Equation (37), it is readily obtained where g; is the i diagonal element ofQ,. Hence, the

0 255 objective function for attaining a RBF network to tolerate
90 log S(xk,0) = S(zr, 0) G(zr)0, (39) single node fault can be written as follows :
9 (ye —¢" (@1)0)®>  _ 2S5(yx — &7 (xx)0)? 9 1
9 Sanb) I o) = o)+ L Zym ()0
2(yk — o7 (x)0)
e o(zr), (40) + MOT[QQ - 2H¢]0. (48)

whereG(z;) is a diagonal matrix defined as in Equation (26 . - L A
A faul'g t]:)?erant RIgF network can thus be obt?’;\ined b3(/ th)%akmg the derivative of(¢|D) and setting it to zeraj; can
following gradient descent algorithm : € obtained as follows :

— N
b X q/M '
- 2 0, = (Hy+ —2—— — . (49
o+ =00 - COOD), @0 o= (Her e, 5 et @9
where i is a small positive value corresponding to the step
size and The matrix q/]/” Q, which appears in the last equation plays
OLOD) S i ( (g — ¢T(xk)9)2) o0 a role S|m|lar to a regularizer.
o0 N o=\ S, 0 52wk, 0) D. Multiple nodes fault with/(4|D) = SSE
1 Z (yx — &7 (z1)0) b(zn) 42) We assume that a node fault is equivalent to permanently set
N S(xk, 0) : the output of the node zero. Therefore, a faulty RBE, 6),
k=1 ~ ~ ~ ~
whered = (0y,0,,---,05)" and
The initial conditionf(0) is set to be a small random vector R
close to null. 0; = Bibs, (50)
C. Single node fault witl/ (|D) = SSE could be defined by multiplying each;(z) by a random

Once a node has been faulty, we assume that its output Wilnary variables; :
be stuck at zero. Therefore, an RBF network withiitsnode
being faulty will be denoted by ad/-vector 6_;, which is
identical tod except that the'” element is zero.

L= o - - . e T
Oi = (01,02,-+,6i1,0, 0111, -+, 0ur) When 3; = 1, the i node is normal. Whers; = 0, the it"
Assume thatthere is at most one node will be removediode is fault. We assume that all nodes are of equal fault rate
randomly The probability that a network will be faulty ig. p, i.e.

fE 0 ﬁ Zﬁz Z¢Z (51)

Once a network is faulty, there is uniformly random for any P if B;=0 5
one of the node is fault, Figure 3. Under such circumstance, B =11 —p if B =1. (52)
Q = RY, (43) fori= 1,2,---,M and 3y, - - -, By are independent random

Qo = {0,0_1,0_o,---,0_n}. (44) variables.



an RBF by adding weight decay can also improve the fault
tolerance.

Finally, it should be noted that investigation the fault
tolerance of NNs has still been a valuable problem in the
NN community [12], [13], [17], [52], [53]. The framework
developed in this paper is just in its preliminary stage. Further
work should have to do in order to make it complete and
connect to the conventional NN learning theory.
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« John Sum, Towards an objective function based frame-

Fig. 4. Multiple-nodes fault NN models. For a network:otidden nodes,
there are2™ — 1 possible multiple-nodes fault models.

The objective function for attaining an optimal fault tolerant
RBF against multiple nodes fault with fault rgtds given by

1 & 1 &
N;yi - P)N;ymT(ﬂ«"k)e
+(1—p)0" {(1 —p)Hy +pQ,} 6.

The implicit regularizer is given by6” (Q, — Hy)6.
Taking derivative theC(6|D) with respect tof and setting
it to zero,f; can be obtained as follows :

L1
Nzym(l‘k)-
k=1

Observe that above is also the solution of

L(6|D)

(1]
(2]

(3]

0= (Hy+p(Qq— (53)

(4
(5]

L(OD) = Z ye — 0" (x1)0)" + 6750,  (54) 6l
k

where X = p(Q, — Hy), minimizing £(0|D) is equiv- ]
alent to minimizing the mean square training errorgg]
NI (g — ¢T(xk)0) plus an additional regularizer -

term 67 26.
[10]

VI. CONCLUSION

In this paper, a survey on fault tolerant NN researches Had
been elucidated. Then, an objective function based framework
is proposed. Using RBF as an example, four objective funig2]
tions for dealing with three different types of fault models have
been derived. In sequel, four fault tolerant learning algorithnss]

work for fault tolerant learning, ifProc. TAAI'2007

J. Sum, C.S. Leung, L.P. Hsu, Y.F. Huang, An objective
function for single node fault RBF learning, iRroc.
TAAI'2007.

John Sum Chi-sing Leung and Lipin Hsu, Fault tolerant
learning using Kullback-Leibler Divergence, to appear in
Proc. TENCON’2007Taipei, 2007.
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Hence,Z can be modeled as an random variable given by

Z=2z+4bz, (55)

thereb ~ N(0,S,). In accordance with the simulation, the
value of S, is 0.0054.
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Fig. 5. Finite precision error.



