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The specific goal of this research proposal isto determine the
developmental functions of Cphx, Duxbl and Gcse, in mouse



chromosome 14A3. Cphx gene is a maternal homeobox gene
specifically expressed in oocytes. We produce Cphx-dsRNA
transgenic mice to investigate the function of Cphx involvein
oogenesis and early embryo devel opment. The reproduction ability
of high copy number Cphx-dsRNA transgenic mice was decreased
and become infertile at about 8 month. In addition, oocyte
maturation and early embryo development was inhibited by direct
microinjection of Cphx dsRNA in germinal vesicle oocytes and 2
pronucleus embryos. We suggest that Cphx paly arole in oogenesis
and early embryo development. On the other hand, the amino acid
sequences of homeodomains in double homeobox gene Duxbl are
most similar to those of human DUX4 protein, associated with
facioscapulohumeral muscular dystrophy (FSHD). During
embryonic development, Duxbl proteins were detected in trunk,
l[imb and extraocular muscle and in elongated myocytes and
myotubes. In adult tissues, Duxbl is predominantly expressed in
femal e reproductive organs and eyes, and slightly expressed in brain
and testes. We suggest that Duxbl proteins play regulatory roles
during myogenesis, reproductive and eye development. The third
gene, Gcese produce two transcripts. Gese-l and Gese-sin length.
Gese-l specifically expressed in both male and female germ cells,
but Gese-s expressed in male germ cell only. During
spermatogenesis, strong Gcese-l transcripts were detected in late
pachytene spermatocytes and round spermatids. However, Gese-s
transcripts were only existed in round spermatids. Gese-| were
detected in the nucleus of |ate pachytene spermatocytes. During
meiosis, Gese-l was trang ocated to acrosome region of spermatid
and maintain in acrosome of spermatozoa. However, Gcse-s
proteins expressed in cell nucleus of spermatid. We suggest that
Gcse-l paly arole in oogenesis and spermatogenesis.
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Fg e B o 2 RNAL 2 SNHed] Ophx A P& > F s 2L 12 e § 2. M50D #
BE G PESPA T TRk P Y 2 oo ve diep b RS BUR
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The specific goal of this research proposal is to determine the developmental
functions of Cphx, Duxbl and Gcse, in mouse chromosome 14A3. Cphx gene is a
maternal homeobox gene specifically expressed in oocytes. We produce Cphx-dsRNA
transgenic mice to investigate the function of Cphx involve in oogenesis and early
embryo development. The reproduction ability of high copy number Cphx-dsRNA
transgenic mice was decreased and become infertile at about 8 month. In addition,
oocyte maturation and early embryo development was inhibited by direct
microinjection of Cphx dsRNA in germinal vesicle oocytes and 2 pronucleus embryos.
We suggest that Cphx paly a role in oogenesis and early embryo development. On the
other hand, the amino acid sequences of homeodomains in double homeobox gene
Duxbl are most similar to those of human DUX4 protein, associated with
facioscapulohumeral muscular dystrophy (FSHD). During embryonic development,
Duxbl proteins were detected in trunk, limb and extraocular muscle and in elongated
myocytes and myotubes. In adult tissues, Duxbl is predominantly expressed in female
reproductive organs and eyes, and slightly expressed in brain and testes. We suggest
that Duxbl proteins play regulatory roles during myogenesis, reproductive and eye
development. The third gene, Gcse produce two transcripts: Gese-l and Gese-s in
length. Gese-l specifically expressed in both male and female germ cells, but Gese-s
expressed in male germ cell only. During spermatogenesis, strong Gcse-| transcripts
were detected in late pachytene spermatocytes and round spermatids. However,
Gcse-s transcripts were only existed in round spermatids. Gese-l were detected in the
nucleus of late pachytene spermatocytes. During meiosis, Gcse-1 was translocated to
acrosome region of spermatid and maintain in acrosome of spermatozoa. However,
Gcese-s proteins expressed in cell nucleus of spermatid. We suggest that Gese-l paly a
role in oogenesis and spermatogenesis.

Key words: oogenesis, spermatogenesis, early embryo development, homeobox gene,

myogenesis, germ cell specific expressed gene, FSHD, double homeobox gene,
homeodomain, acrosome formation, Cphx, Duxbl, Gcse,DUX4
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AT RGBT 2 1403 % Cphx, Duxbl % Gese 3 ¥z /=3 » &
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T4 57 o ik da AL Fl 7% (homeobox gene families) #_ - ¥4 & 7|3 4
HFFEE A Gy AT B D ETHARDLR A A %?« BAEZ T E AT
(De Rebertis, E.M., 1994) > K,% TV SRR E 2 F T > Eirwe o
CZFIEBE2 A8 RSB MOE - 2 A4 > FRgA TS B3
Eeafr s d (Gehring, et al., 1994) ptEH A F& 5 d Sis? B> § Fik
#4 78 ¥] Antennapedia (Antp)# 2 R %> € & 2 % isff & §l =3 % (McGinnis, et
al., 1984) s T # R4 E FWFT L AT F - KFRETL A5
#s R4 (homeobox )@ #afr £20 o P BB R T % ¥ & F DX 60 Breipk
A= helix-turn-helix e - B¢ % = Bl g g ¥ LN DNA A7l 2 5
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2000) > Rhox A FIFF =33t X A M chA2 % > AP A7 0 [4A3 % eh
AT fRgR st 4 4 fehsg gk b Rhox ﬁ’srﬂiigié’a‘%'ﬂ chi id et 2 ppfd 4
S PREAFHE LI W PR B EE R B ARG R €7 T A0l
Bt g FRATFIFEY 7 R Fle 307 A Pﬁmm}?a.%— Mok R st A7)
HREL E3#a il g P - BAFELAFY DA FT UB R T
Foag o B NPT 14A3 ® A Fl (phx, Duxbl % Gese F ¥ et 3L F1¥¥ en
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SREREMPLAE PRI b 0 [4A3 " f TR FAY T AT
v r’v'ﬂCphXZi Duxbl F iR A FleauF 3 B2 2BERAEN2Z M H P g Placy
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ERAE7 J (phx & — 04 BT fmde > @ T P50 Duxh] B € & TP e &
Rim% > Geses # WA mE o R OiE s Rk Bl e fmre > = Tﬁ%fﬂ‘ﬁ’z B P fm
e T AR € A IR L A e T uB AR 0 Duxh] B Gese ihd s R ORI
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BB R ragE T 2 A G g R arat e dren g o £ HOF A HE s 4B R Uty
Wit ERE R AL B X EAPR T - B R R R R S e T
g4 F 4] o Wi 4ot > 1345 cDNA library 2 EST database 4 7% % 4 3R >
ERLNE VR Y SRS S A £ S IR PO s Sl £ B N IR I SE A ) SRS
BE LA Fﬁ:‘&:%éﬁ&rﬂ(Wang et al., 2003) > A FRFEFAERT 23 R
B F g AR ] 0 KR %Jf"ﬁ”l“—* » 3217 PCR F i &3 0] BUVRPo83 fm e
cDNA A F1 & > %ﬁ* - 37Nl Ria AT ¢ 3w & ENMM(Nanog)(Wang et
1.,2003), Cphx(Li et al., 2006a)% = 3 % mDuxb](Wu et al., 2010)#& 7 >
TR R RBATIFFAR AR i e 2 P Y 2 P N Y oD
Friwer s d WA @ me T S RE - BApE AFFRGEAR BB ﬁ”.‘F’%#"mA\
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(- ). (phx gene

AETPHEY N (phx R RBEAFEPme L - BAEaR AT B
4 G g ;fﬁ derimie & — M A E ek R AT Nobox ik 4 i = B3 &
Rajkovic et al., 2004) » &iTe# 7 Agor 3 L P k45 531t e A (premature
ovarian failure; POF) » 2 Nobox A FIA 2 b hia® DR FE PRE LT 5
Tl 6 i 4o F1Y Nobox B FlenR #3— & POF o 4 7 3 7 a £ F1 % 2
- (Qinet al.,2007) > xR AF e robegd vy PRERPFTELEL DES o
“,f 1R RAE AT B A e “m’?é%ﬂ%‘\» g 45 7]+ o 4e Figla (Factor In
the GermLine, Alpha )¥** 4 7e» 7 ix£ & 4 ¢ (Liang et al., 1997;
Soyal et al., 2000) > Figla # F1§F $—“ EUH sz PapE R ]%"9?’? v o ed 4
(69 & ek @2 2) % primordial follicle > FPFerim®e hcx 2 p i % > K7
Figla ¥t 24 e 2 follicle shF T F e & ehd & > d BT Figla £ 7]
ﬁ%"‘,ffr B “F & microarray 4 17 (Joshi et al., 2006) > # R AF T % ¢
(phx # = T 7 > 57 Figla 39 ® &2 B 303 iy (Ophx 22 Flend 3> @
BB A R T o AT PR D B Figla Fo B Jpd A Feh
promoter kx# Cphx-dsRNA1 e IR > & 47 (phx % T "2 ¥ 'mve & 3L 4 5 Hp ip

PaE T e 5 o

(=) Duxbl:

7’%’5’“%% v mDuxb/éﬂ%*“%?ﬁz&%ﬁ%ﬂ?\"z(DUX)m@—i 7 3 BT
DUX ¥ 5 At A 55 % 'f»ﬁt‘ ER A F T3 5 Ao PFDUX A FIELUL F intron
15 A EDHthU%ﬁ’#’g B4 MaE A FEY B s e 5L Y
D4Z45\:m€‘7if£unk”ﬁ‘i’lf\%’ﬁ fe NG B R IR A R
(FSHD:Facioscapulohumeral Muscular Dystrophy) » FSHD #_% = #& % % crif i@
Mherup X R o B AR A U DUN A FIR% ¢ SARB IR IA 0 » F 7 e h DUN L 7]
o Ll R e g DUNAFehA R B s B DUXI 2 DUX4 3-v
MR 5 > FSHD o5 4 mﬂ”*# A fmre X Bde P o 430 DUX Fev el ¥ 4 22 o
2 X FbL%FE/E‘(%E]‘é\:m)“ BIE=X e dP 35S 1?7me‘~alﬁ4=’» 'ﬁpﬁi}ﬁ%?\?‘«k@rﬁﬁ
Fe DNAehic 4 > Z g7 H—‘ﬂikﬂmz\m% 6 SR T AL ] 9 SR
7 o] B DUXb]zér?“/T‘ TEESE Y - BDux AT 2 e e DU A FlE s T
% 7 intron-’ © Duxbl E&Wf 7% intron z ‘¢ 7 % Feosplicing form e
A5l B Duxbl 3R F)1 ek d R ens m o F R4 F = B tandom repeat IR % o
I p 23 (phx 2 F1e0™ %5 > Duxbl » 1 & 2R3 4 2 s fapmend 4 e
o B Duxb] AR FIEREIRE A 4T BE R AR R AP HLA R
1 g v 2 FSHD 4 s e 2 o
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129% Unigene database 2 < & PCR ch4 45 > % -] &AL F148 4% 04 7]

TAAH B4 s we ¢ (Shultz, et al., 2003) @ i&— # &~ &
spermatocyte £ round spermatid & A 47 H A FZ IR > FIRHE P S wF 11%
220 A TFIVE R L B - P apl B R - BT - T u P HA R A
s(Hong et al., 2005; Choi et al., 2007) > F] &= 7 ## ﬁmﬁe% - % E LT
L RN M S ER R el - A R i R LS SN e R R S WA
A Fe o d wERH e - A AT AR L LR LY
(Spermiogenic phase) i F] » 448 ‘o 2 spermatogonia $& "> B i * o A2
EES G’cse&fﬂ‘ﬁ% TR IANIP e o 4 B - Mnd YA B e 0 1B A
s 2 o spermatocyte B 43 Gese #-v chd IR 0 pEcA A (8 Gese d e
WELT wie o 2 2B WY - M EHE ¥ oA g g - fEF L7 R
JEH- & globozoospermia » 3 £ 5 & 7 Z o Fl2 0. 1% (Aitken, et al.,
1990) » — £ B4 % - 4 & A Flde dcrosin ® %16 H Ry 2 ¥ (Adham et

1.,1997) ; Gopc(Golgi-associated PDZ and coiled-coli motif) £ # % 3pF »
i EAEE Y 3 > ¥ globozoospermia (Yao et al., 2002) > ¥ ¢hx 3 — i
TRRE v AR E IR > 4o Afaf (Li et al., 2006b); AEP/(Luk et al., 2006)
% VADI. 2/AEP2 (Lee et al., 2008)% > feigut kv chrd iy (v A v F =y
Gese 3-v fzefdd 78 fmfe & AR 2 £ B F G0 G BT A PN 4 A i
Rl TTME T 20 %
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(- ). Cphx gene

(D. AF1 A4 d 200 4 2006 # 3 & hig % (Li et al., 200604+ >
(phx 3 & . {e P kn¥e & I P0g kmPe > P AT Rdneie T A e e ¢
hirmie 30 (phx A FIhE R > SRR AR - L R R A Ry

% o 247 Cphx AR FImRNA A 3 > F IR AP e X R iR > (phxmRNA
A+ ehipoly A 7 ut & eI % 0 ¢t mRNA 4~ =+ poly A 2 & IR % 7 12 1232 mRNA
R E R i T B - A R TIY L i A A PR
HiEm RS T 8] > AP AER] (phx A T P e chsl BB 5 ) i
LT AT R E R A o

(2). 39 27 1 d FRLE %m’iﬁ/\%‘r v AR Cphx v &= e i 4
EBEF > DEadpie B p 2 3 (Cphx-Fig. 1) » s &% %9 Cphx v
14 82 mRNA ehd LA Ap e & 9o

(3)# it & ¥7:00cyte-specific RNAi » B = & B3]+ & £ 4 & Cphx-dsRNAL
A Fig 7 8 (Cphx-Fig. 2)> A Fl#g == & founder # #7 & 2 | & #cp & %
M (Cphx-Fig.3) » ~4£5-8 & » @ 2 WA s+ 2 L P> 170 LA Fsw
DNA Z #cdic % cngg e = Bl Hoird ) BB Hs 4824 ArAFERS B
P e (phx AFIRIRE G TR AR > (phx mRNA AP hE D v F T
—L;tﬂge%pmig%c PR KRS T0% 0 EERE G Pre g A P F DY D
PP B A BN AR D F\»’"E‘*é'—]@;’*—* R H/RE2ER% 725
Bz fry pkgena, k2 ¢ F (Cphx-Fig.4)» #47~ B2 2 L= B ep
Cphx dsRNA 7 &P K ¥ 2 Jmie B 7 » I A i &jpie #icp BRI s

GBS s g aA ke B 0 I FERPLARL B
(Cphx-Fig.4,5) » 38R ¥ it Cphx £ F1& B0 B¢ P lmbe = JUPF £ 4 >
o PR 0 BE TR P L SRt Fe e P 0 Fld B wie kS 7 R

(4). 7= Cphx-dsRNA 2 Fl# 78 & & 47 5% % B or > 2203 L Tl 78 &L e AL 7]
g B2 fem iz @ Tg/Tg -] &> AP 4aip] Cphx 305 BP0 7 7 fe 4
& Z e § Cphx-dsRNA ## 78 2L %] 5 53 4cfs > * £ M (phx A F1 4 R E >
el ir e T o 3V A 5 B % Cphx dsRNA 4 47 (phx 4efe 32385 8P iz
PRI Y o

(5). F 5 Cphx 2 FI¥3° 9P fmie i liom B 2 5 Hp 9 vagf 7 ¢ %%?3

Yz & GV oocyte ' & ficix &+ c-mos §= CphX dsRNA » /L &4 24 & 48 -

PERLR P A A P3N & KR ERA %J-?P e CphX 2% 3.6%(3/
83) ;cmos i 1.3% (1 /77) - ¥R 18.8% (15/ 80) ;fr= > %
At i 52.49% (22/24) o ter2 ¥z i3 st CphX /] +4F RNA P> P2 ‘o
gt e I —x/ﬁ‘»ﬁz/n\édr’b&mﬁwﬁ:*’ﬁ% et kg E T R (P
<.05) (Cphx-Fig.6) - % c-mos # Cphx dsRNA ;x &+~ 2PN embryo » %275



IR i> % morula PP > © F 5 i » blastocyst (Cphx-Fig.7) -
B2EHH . (phx gene ’H"’/‘\ Prmie Vg T A T e Cphx IR U (S
BEAR G A4 T a4 e A B rsantsfiR b 0 e PF Cphx-dsRNA #8788 5
HEAZ MR o 82— H A 47 Cphx-dsRNA A B p 5 ¥ 2 Jmie 55 » B0
PRk &/ﬁzfﬁiﬂ *K/ﬁk‘ S s g A ke By 0 H T RGPk
+ 2% > @ &GV oocyte & 2PN embryo B x5+ CphX dsRNA 16 » B &g en
FER § R BREs A2 S s F5 o Ft A dap] Cphx A& %] 9 o e
) ﬂ-ﬁﬁ’%_”";ﬁ??ﬂ:ﬁ:,ﬁfgﬁ‘ﬁ Hidk § oo gk frmp” A )fng*mm-' PE
I A S Cphx-like A 7> #-ke ¥ U L4772 5,;,;5 g POF 5 + B E T
3 Cphx-like & %18 ¥ R % -

(= ). Duxbl gene
(1). & TR F A 2010 £ 4 £ 597 § 4 % (Wu et al., 2010) 4 7
Duxbl 35 F] 13t Cphx A FIT 7% = BE4F B2 R = BEAF A FIAE 713 95%
i & > d T fintron 4 0B F L B o E81A A7 P I mRNA B 7
Duxbl 2 Duxbl-s » 4£R]|¥ 2 4 3§87 fehd-v > H ¢ Duxbl 3¢ F 3 = B I
B % > @ Duxbl-sBIF ¢ 37 - BlFiRi % (Duxbl-Fig.1A,B) °
(2). Duxbl # ] orthologous 4 #7:- R k48 3¢ 1k R % 22 4 %5 DUX4
Fod PR BB G 67%Ap 2R > DUX4 H_P win s B A G &2 A iz
sop % % g (FSHD:Facioscapulohumeral Muscular Dystrophy; €. % = #& %
Rl G aep X g )0 S G AN E B R YA R S e 48
#1347 fE 5 B2 2R Duxbl £ F]d T B exon #rie = o 2 A 35 DUX4 A F)E A @
Z intron> TR RGP AED S 0 F a3 5 orthologous
(Duxbl-Fig. 1C) -
(3). Duxbl 4 A 45 (% R 238):4= % 12 RT-PCR 7 3% & 45 Duxbl & Fen#
B %w Duxbl 3 F13 & £ B4 78 % SL(9P K & é%l; NEES SN S F
Pz st & A IMAIGZ & 4 w5 Northern blot 5 % % 7% » Duxbl mRNA
* 4 2kb =+ » B2V e RACE % % 4p ## & (Duxbl-Fig.2) -
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Cphx-Fig.3
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Cphx-Fig.5
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Cphx-Fig.6

= | 148

m Ml
BmGv a0%

0% - L =

50%

a0%

Percentage

30%
20% _— ] | e A aa I —e e _— - - -
10%

0% T T
BO B2 Ba B+ID B2 Bt MaCl-0 | NaCl-2 | MaCl-4 | cphX-0 | cphX-2 | cphX-d | c-mos<0 | c-mos-2 (c-mas-4

L] o 52381 | 57142 0 11111 | 20887 a 1875 | 275 a 36144 | 60241 ] 12587 | 12987
M o 42857 | 38.005 0 | 70.370 | 67901 o 575 | 55 a 36.144 | 38.554 0 51948 51948
mGY 100 | 47619 |4.7518 | 100 | 18518 (113111 100 375 | 175 100 | 60241 | 55421 | 100 | 93505 | 93506

BE pirir 8¢ Cphx dsRNA > GV (germinal vesicle) oocyte > #*h32 % 24 3 48
P 33 GV Pime F T I metaphase (MI)% metaphase IT(MII)4F % jm*% e
#P o 3= » Cphx-dsRNA 2. GV oocyte #% v = MI & MII ‘]g‘f T BE e o5 50% o

16



Cphx-Fig.7
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Fig. 1. Genomic structure and RMA transcripts of Ouxbl genes. A: The tandem triplicate of mouse Duxb/ genes and their surrounding genes
(Plac and Cphx) are present on mouse chromosome 14A3. The lengths of spaces between each Duxbl gene and RNA transcripts are indicated.
The ORFs of Duxbl and Duxbl-s transcripts are shown in gray and the regions encoding homeodomains are in black. B: Comparison of the pre-
dicted amino acid sequences of Duxbl and Duxbl-s proteins. The identical amino acid residues are in bold and the homeodomains are boxed. The
different amino acid residues in helix 3 of homeodomain |l (H2) are in italics. G: Alignment of amino acid sequences of two Duxbl homeodomains
(in bold) with those of other predicted homeodomains of double and paired-like homeobox genes. The names of gene products and their homeo-
domains are listed in the left Dashes represent sequences identical to those of Duxbl homeodomains. Identity indicates the percentage of
sequence identity to Duxbl homeodomain. The asterisks (%) indicate amino acid residues predicted to be involved in sequence-specific DMA bind-
ing. D: Amino acid sequences of homeodomains of human DUX4 and mouse Duxbl proteins. The basic amino acid residues in two terminal

Homeodomain I (HL)

1 MELSCSTGLLEKEAF
1 MELSCSTGLLEERER

Homeodomain IT (H2)
61 Wﬁm:qurmcsusowzqnxnRrumsnrnmrmnmmmmm 120
WEQK

61 HEK IRKQAEFRACCSEE SQEQEQDKP RYKEARRSRTHF TKFQTDILIEAFEKNRFEG 120
Helix 3 Helix 1
121 [IVTREKLAQQTGIP ESRTHINFQNRRARHPDPGONTQRTFHEPQSSQGPT QKTVGKLAFS 180
121 IVTREKLAQQTGIPESRIHVRCASLCLWQPTCPYHKPLFSRAVDG)SQATHECPCALDTG 180
Helix 2
181 KTLTSSASVILPLS PPHTENGPLDLSKGROKQLPGTTLLOS SQVVQQRSDDONENKGHLE 240
181 CEYLVFPATVWRNSHIRPAE S* 202

241 PTTTPGEQGFHEQPPLOLLTONRGHN PRE SGGLAVPRLEDCTOVPAVNOHFRKLDONDES 300

2055 bp Duxbl

Duxbl-s=

201 PI@JHDEWPGSHMEBHFDKEYHSEKAELHWWQLRQLASVQPQAHQ’I‘D* 351
Helix 1 Helix 2 Helix 3 Identity
1 AFRERITILTQSQKDT LRVWFEKNENPDLAT RGHLAKELG ISESQIMTWFQKHEKIRKQAE 60 100% (Mm)
1 —————-— N ————m—m—mmmmmm e Rmmmm e VE 60 93% (Rn)
1 G-P--LVW-P——SEA--AC—R--Y-GI---ER—--QAT--PF-PRVQI-—--NE-SRQLRQH 60 42% (H=)
1l H==C-TKF-EE-LKI-INT-NQK-Y-GY--KQK--L-INTE--F-QI---NR-ARHGFQK 60 33% (Hs)
1l H—C-TKF-EE-LKI-INT-NQK-Y-GY--KQFK--L-INTE-—-R-QI-—--NR-ARHGFQK 60 35% (Pt)
1 H--N-TTF-TY-LHE-ERA---SHY--VYS-EE--GEVWLP-VREVQV---NR-AEWRRQE 60 32% (Mu)
1 Q-—-K-TSFSSE-LOL-ELV-RQTMY--IHL-ER--ALTLLE--R-QV---NR-AKSRRQS 60 30% (Mm)
1 ---S-THF-KF-—T-I-IWA----RF-GIV-“EK--QQT--P--E—JI%I---I;R-J\RHPDPG 60 43% (bm)
Helix 1 Helix 2 Helix 3 Identity
1 ARRSRTHFTKFOQTDILTWAFEEKNEFPG IVTREKLAQQTC IPESETHIWFOQNREARHPDPG 60 100% (Mm)
R - - — - S
1 G-—K--AV-GE&§--AL-LR--——--D-—-—-AA——E—-RE—-L-———— Qe ——————— GO- 60 67% (Hs)
1 ---C--TYSAS-LHI--K--M--Fy---D§--E--KEI-V----VQ-------5-LLLOR 60 53% (Hs)
1 -——-C--TYSAS-LHT--K--M--PY-—-D§--E--KEI-V--—-VQ-----—-S-LLLOR 60 53% (Ft)
1 H—N--T--TY-LHE-ER-—-SHY-DVYS——E--GRVNL—-V-VQV-—————— KWRRRQE 60 45% (Mm)
1 Q--K--S5-S8E-LQL-ELV-RQTMY-D-HL--R--AL-LL~-—-— QV----—--KSRRDS 60 45% (Mm)
Heliwx 1 Helix 2 Helix 3 E+R
1 ARRRRIILTQSQKDTLRVWFEKNEN PDLATRGHLAKELGI SESQIMTHFQKHRKIRKQAE 60 8
1 ARRSRTHETKFOTDILIWAFEKNRF PGIVTREKLAQQTGI PESRIHIWF ONRRARHPDPG 60 3
1 GRPRRLVWT PSQSEALRACFERNEY PFGIATRERLAQAIGI PEPRVQINFONERSROLROH 60 6
1 GRRERTAVTGSQOTALLLRAFEKDRF PGIAAREELARETGLPESRIQIWFONRRARHPGOG 60 7

regions of homeodomains are shown in bold. The total numbers of lysine and arginine residues in two ends are shown on the right.
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Duxbl-Fig.5
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Duxbl-Fig.6
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DEVELOPMENTAL DYNAMICS 239:927-940, 2010

PATTERNS & PHENOTYPES

Characterization of Genomic Structures and
Expression Profiles of Three Tandem Repeats of
a Mouse Double Homeobox Gene: Duxbl

Shey-Lin Wu,!” Ming-Shiun Tsai,>’ Swee-Hee Wong,> Hsiu-Mei Hsieh-Li,* Tz-Shiu Tsai,’
Wei-Tang Chang,’ Shin-Ling Huang,? Chun-Ching Chiu,! and Sue-Hong Wang?®>*

We identified and cloned a mouse double homeobox gene (Duxbl), which encodes two homeodomains. Duxbl
gene, a tandem triplicate produces two major transcripts, Duxbl and Duxbl-s. The amino acid sequences of
Duxbl homeodomains are most similar to those of human DUX4 protein, associated with facioscapulohum-
eral muscular dystrophy. In adult tissues, Duxbl is predominantly expressed in female reproductive organs
and eyes, and slightly expressed in brain and testes. During gonad development, Duxbl is expressed from
embryonic to adult stages and specifically expressed in oocytes and spermatogonia. During embryonic devel-
opment, Duxbl is transcribed in limbs and tail. However, Duxbl proteins were only detected in trunk and
limb muscles and in elongated myocytes and myotubes. In C2C12 muscle cell line, Duxbl expression pattern
is similar to differentiated marker gene, Myogenin, increased in expression from 2 days onward in differenti-
ating medium. We suggest that Duxbl proteins play regulatory roles during myogenesis and reproductive

developments. Developmental Dynamics 239:927-940, 2010. o 2010 Wiley-Liss, Inc.
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INTRODUCTION

Homeobox genes encode transcription
factors that regulate embryonic devel-
opment programs including organogen-
esis, axis formation, and limb develop-
ment (McGinnis and Krumlauf, 1992;
Boncinelli, 1997). Their products regu-
late the expressions of target genes
in tissue- and spatiotemporal-specific
manners through conserved DNA-bind-
ing motifs called homeodomains. Home-
odomains have three «-helical seg-
ments of which the third constitutes the
main DNA recognition site and binds to

the major groove of DNA (Gehring
et al., 1994). This sequence-specific
binding allows homeodomain proteins
to activate or repress the expression of
a battery of downstream target genes.
The correct expressions of homeodo-
main proteins in adult tissues including
liver, kidney, and intestine are impor-
tant for the regulations of cellular mor-
phogenesis, growth, and differentiation
(Cillo et al., 2001).

Different homeobox genes are classi-
fied through similarities in amino acid
sequences within their homeodomains
and the other coding regions of their

gene products (Galliot et al., 1999; Hol-
land and Takahashi, 2005). The paired
(PRD) class is divided into two sub-
classes: the PAX subclass and the PAXL
subclass (Holland et al., 2007). The PAX
subclass homeodomain proteins have a
conserved 130-amino-acid DNA-bind-
ing domain, the paired domain, up-
stream of their homeodomains (Bopp
et al., 1986). The PAX gene family is an
ancient and remarkably conserved
gene family, which plays key roles in
the formations of tissues and organs
during embryogenesis. PAX3 and PAX7
mark myogenic progenitor cells and
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928 WU ET AL.

regulate their behaviors and entries
into the program of skeletal muscle dif-
ferentiation (Buckingham and Relaix,
2007). PAXE is required for eye forma-
tion in vertebrates and its homologues
in invertebrates, such as eyeless in Dro-
sophila also play a crucial role in eye
formation (Kozmik, 2005). The PAXL-
subclass homeodomain proteins show
significant sequence similarities (55—
75%) to PRD-class homeodomain pro-
teins but lack the paired domain, and
contain a glutamine residue at position
9 of the third helix in their homeodo-
mains (Burglin, 1994). Another com-
mon feature of PAXL homeobox genes is
the presence of an additional intron
within their homeoboxes, between the
region that encodes position 46 and 47
homeodomain amino acid residues.
Many PAXL homeobox genes, such as
Rax (retinal homeobox), Arx (aristaless-
related homeobox), and Vsx (visual sys-
tem homeobox), are expressed in the
nervous system and during brain or eye
morphogenesis (Mathers et al., 1997,
Miura et al., 1997; Ohtoshi et al., 2001).
They play critical roles during embry-
onic developments.

The human double homeobox (DUX)
genes encode two PAXL-subclass home-
odomains. The DUX genes are present
in multiple polymorphic copies with a
3.3-kilobase (kb) tandem repeat scat-
tered in human heterochromatins
(Ding et al., 1998; Gabriels et al., 1999;
Beckers et al., 2001). The 3.3-kb dis-
persed DUX repeats in the D474 locus
of chromosome 4 (DUX4) have been
found to be associated with the faciosca-
pulohumeral muscular dystrophy
(FSHD), the third most common form of
inherited muscular dystrophy (Wij-
menga et al., 1992; van Deutekom
et al., 1993; Hewitt et al., 1994). It has
been hypothesized that the larger
DUX4 copy numbers in nonaffected
individuals are associated with an in-
hibitory chromatin structure prevent-
ing gene expressions, and the inhibition
is relieved by the shorter DUX4 arrays
found in FSHD patients (Winokur
et al., 1994; Tupler and Gabellini,
2004). The coding region of human
DUX4 gene shows evolutionary conser-
vation (Clapp et al., 2007) and DUX4
protein can be detected in primary myo-
blasts extracted from FSHD patients
(Belayew, 2004; Kowaljow et al., 2007).
Previously, DUX4 protein is identified
to have pro-apoptotic activity (Kowal-

jow et al., 2007) and is found to be a
transcriptional activator of PITX1 gene
(Dixit et al., 2007). DUX4 expression
recapitulates key features of FSHD mo-
lecular phenotype, including repression
of MyoD and its target genes, and then
diminished myogenic differentiation
(Bosnakovski et al., 2008). However,
the mechanism(s) that causes FSHD
phenotype remain unclear. Further-
more, the in vivo functions of DUX4
protein, especially in normal tissues,
remain unknown. Other human double
homeobox genes are previously identi-
fied using PRD-class homeoboxes as
query sequences to search human ge-
nome sequences, and they have been
assigned into four paralogous groups
including DUXA, DUXB, DUXC, and
DUXB-like (Duxbl; Booth and Holland,
2007; Clapp et al., 2007). The molecular
structures of their transcripts and the
expression patterns and functions of
their protein products have not been
provided.

Recently, a novel mouse double
homeobox gene has been reported as
Duxl (Kawazu et al., 2007) and Duxbl
(Clapp et al., 2007), respectively. This
gene has been shown to play a critical
role in CD4/CD8 double negative thy-
mocyte development (Kawazu et al.,
2007), but its detailed genomic struc-
ture, major transcript(s), expression
patterns, and protein product(s) are not
available. Here, we characterize the
genomic structure of this mouse double
homeobox gene, Duxbl, and suggest
that the Duxbl gene is the mouse ortho-
log of human DUX4 gene. The Duxbl
protein is found expressed in adult tis-
sues, including reproductive tissues,
eyes, brain, but not in muscle. However,
during embryo development, Duxbl is
seen expressed in differentiated myo-
cytes. The spatiotemporal expression
patterns of Duxbl are also analyzed dur-
ing gonad developments, and Duxbl is
specifically expressed in germ cells,
including oocytes and spermatogonia.
Duxbl is predicted to play important
regulatory roles during myogenesis and
reproductive developments.

RESULTS AND DISCUSSION

Genomic Structure and RNA
Transcripts of Duxbl Genes

To identify novel homeobox genes
involved in early embryonic develop-

ment, we screened a murine embryonic
stem cell cDNA library by degenerate
RT-PCR (Wang et al., 2003; Li et al.,
2006). One of the genes identified con-
tained a sequence similar to a Riken
full-length ¢cDNA clone (1110051B16
Rik) previously reported as Duxl
(Kawazu et al., 2007) and Duxbl (Clapp
et al., 2007), respectively. However, the
genomic structure, expression profiles,
protein product(s) of this gene, and in
vivo function(s) of this gene product(s)
are all unknown. Based on the sequence
in the database (1110051B16Rik), the
putative translated protein of this gene,
Duxbl, contains two helix-turn-helix
domains weakly similar to the known
homeodomains. Analysis of the genomic
structure of Duxbl gene based on infor-
mation in Ensembl and NCBI data-
bases localized it to the mouse chromo-
some 14A3, downstream of the Cphx
gene (previously named as Eso-1, Li
et al., 2006) and mapped to 24.82m
(Gene ID: 48502; Fig. 1A). However,
we discovered two other downstream
Duxbl genes mapped to 24.96m (Gene
ID: 72675) and 25.1m (Gene ID: 72672;
Fig. 1A). These two downstream Duxbl
genes are identical to each other, and
share approximately 95% sequence
identity with the upstream one (Gene
ID: 48502). During analysis of the
genomic structure of Duxbl, we
observed that in addition to Duxbl,
Plac9, and Cphx genes in mouse chro-
mosome 14A3 are all duplicated. Previ-
ous reports suggested that Plac9 and
Cphx genes play important roles in
mouse reproduction (Galaviz-Hernan-
dez et al., 2003; Li et al., 2006). This
near-telomeric cluster of reproductive
genes in rodents may constitute an evo-
lutionary advantage (Paillisson et al.,
2005) and may come from a mechanism
for protecting genes against mutation
(Clapp et al., 2007). The location of
these Duxbl genes in a near-telomeric
cluster neighboring two reproductive
genes (Plac9 and Cphx) suggests that
Duxbl genes also play a role in mouse
reproduction.

According to our data of rapid ampli-
fication of ¢cDNA ends (RACE) and
the sequences of expressed sequence
tag (EST) clones in databases, the
upstream Duxbl gene (Gene ID: 48502)
is composed of five exons spanning
6,390 bp. More than one transcriptional
start sites for this Duxbl were identified
by 5 RACE analysis. The major
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: Homeodomain IT (H2) !
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51 |WFQKHRK IRKQREFACCSEE SQEQEQDKPRVKEARRSRTHF TKFQTDILIEAFEKNRFPG

Helix 3 Helix 1
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Helix 2
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181 CKYLVFPATVWRENSHIRPAES*
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1
1
1 GRPRRLVWT PSQSEALRACFERNPY PGIATRERLAQAIGI PE PRVQIWE ONERSROLROH
1

GRBKRTAVI GSQTALLLRAFERDRF PGIAAREELARETGLEFE SRIQIWF ONRRARHPGOG
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120
120
180
180
240
202
300
351
Identity
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K+ R
&0 8
60 B
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&0 o

regions of homeodomains are shown in bold. The total numbers of lysine and arginine residues in two ends are shown on the right.
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transcript is 2,055 bp in length (Fig. 1A)
and was deposited in the NCBI Gene-
Bank, accession number EF472598.
Although there are different transcrip-
tional initiation sites found in these
Duxbl transcripts, they contain the
same open reading frame (ORF) of
1,053 bp and a putative polyadenyl-
ation signal, AATAAA, at position 2,037
to 2,042. For the two downstream
Duxbl genes (Gene ID: 72675 and
72672), minor differences in the intron
4 sequences between them and the
upstream Duxbl gene (Gene ID: 48502)
result in producing an additional minor
transcript, Duxbl-s, composed of four
exons (Fig. 1A). More than one tran-
scriptional start sites for Duxbl-s tran-
scripts were also identified by 5 RACE,
and they also encode one identical pro-
tein. The most abundant Duxbl-s tran-
scriptis 1,653 bp in length with an ORF
of 606 bp, and a putative polyadenyl-
ation signal, AATGAA, at position
1,566 to 1,571 (accession number
EU257807). The proposed translational
start sites for Duxbl and Duxbl-s tran-
scripts, both correspond to the Kozak
consensus site surrounding their start
codons (Kozak, 1996). Generations of
Duxbl and Duxbl-s transcripts may
result from different promoter usage
and/or alternative splicing during
development.

Analyzing ORFs of the major Duxbl
and minor Duxbl-s transcripts indicates
that the putative Duxbl and Duxbl-s
proteins contain 350 and 201 amino
acids, respectively (Fig. 1B). The N-ter-
minal 139 amino acid residues of Duxbl
and Duxbl-s proteins are identical and
contain one domain similar to known
homeodomains (homeodomain I, H1).
The C terminus of Duxbl protein con-
tains the other homeodomain (homeo-
domain II, H2); however, Duxbl-s pro-
tein does not because it lacks helix 3,
the sequence-specific recognition helix
(Fig. 1B). Thus, the major product
(Duxbl protein) of these three Duxbl
genes contains two homeodomains, so
they are double homeobox genes. Fur-
thermore, the coding regions of all
homeodomains for Duxbl and Duxbl-s
proteins contain an interrupting intron
between homeodomain codon 46 and
47. This is a common feature of PAXL-
subclass homeodomain proteins (Bur-
glin, 1994). In addition, the amino acid
sequences of Duxbl homeodomains
share the highest similarities with

known PAXL homeodomains (Fig. 1C).
Therefore, these three Duxbl genes
belong to PAXL-subclass homeobox
gene family and they are also mouse
double homeobox genes.

Searching for Putative Duxbl
Ortholog

Although the genomic structure of
Duxbl is more similar to human DUXA
gene than human DUX4 gene, the pre-
dicted amino acid sequences of homeo-
domains for Duxbl and DUX4 proteins
are more similar (H1: 42% identity; H2:
67% identity) than those of Duxbl and
DUXA proteins (H1: 35% identity; H2:
53% identity; Fig. 1C). Recently, a
mouse representative of D4Z4 on chro-
mosome 10 was identified and named
as Dux (Clapp et al., 2007) and mDUX
(Bosnakovski et al., 2009), respectively.
However, sequence identities of the pre-
dicted protein and DUX4 homeodo-
mains (H1: 36% identity; H2: 56% iden-
tity) are also lower than those of Duxbl
and DUX4. Based on these sequence
identities, we suggest that the human
ortholog of Duxbl gene is DUX4 gene
but not DUXA gene as previously
reported (Kawazu et al., 2007). Fur-
thermore, comparison of total amino
acid sequences of Duxbl protein with
those of its predicted ortholog shows
that Duxbl protein shares the highest
similarity with its rat ortholog
(RGD1311053; 80% identity; data not
shown). The homeodomain sequences
of Duxbl H1 and H2 also exhibit the
highest similarity with those of its rat
ortholog (93% and 91% identities) fol-
lowed by its human ortholog (42% and
67% identities; Fig. 1C). Comparisons
of homeodomain sequences of Duxbl
and other PAXL-subclass homeodomain
proteins show identities of only 30 to
45% (Fig. 1C). This result indicates that
Duxbl is a special member of the PAXL-
subclass homeobox gene family.
Otherwise, the sequence identity
between Duxbl H1 and H2 is only 43%
(Fig. 1C). We found that Duxbl H1 binds
DNA in a nonspecific manner but Duxbl
H2 specifically binds a palindromic
sequence (Tsai et al., unpublished
data). The large differences in amino
acid residues and DNA binding pro-
perties between Duxbl H1 and H2 sug-
gest that two Duxbl homeodomains
may bind and regulate different

downstream genes through different
mechanisms.

Duxbl Expression Pattern in
Adult Tissues

Although many double homeobox genes
are found in humans, only DUX4 pro-
teins have been detected in vivo in myo-
blasts from FSHD patients (Belayew,
2004; Kowaljow et al., 2007). However,
the in vivo expression pattern of DUX4
protein is still unknown. Accordingly,
we first detected their major and minor
transcripts, Duxbl and Duxbl-s, of these
three Duxbl genes in various adult tis-
sues by reverse transcriptase-polymer-
ase chain reactions (RT-PCRs). Both
Duxbl and Duxbl-s transcripts are pre-
dominantly expressed in adult eye,
brain, and reproductive organs includ-
ing ovary, uterus, placenta and testis
(Fig. 2A). We next performed Western
blotting to decipher in vivo expressions
of Duxbl proteins in adult mouse tis-
sues using affinity-purified homemade
Duxbl polyclonal antibodies. A 38-kDa
protein band indicating Duxbl protein
is predominantly detected in adult eye,
brain and ovary (Fig. 2B). The results of
Duxbl expression patterns in adult tis-
sues by RT-PCRs (Fig. 2A) and Western
blotting (Fig. 2B) are complementary,
because we only detected Duxbl pro-
teins in adult tissues with strong Duxbl
transcript signals. However, Duxbl-s
protein is not detected in these adult
tissues by our polyclonal antibodies.
This may result from the much lower
expression levels of Duxbl-s transcripts
than Duxbl transcripts in these tissues
(Fig. 2A).

Blocking assays for preincubations of
polyclonal antibodies with purified glu-
tathione S-transferase (GST) proteins
or GST-H1 and GST-H2 fusion proteins
were used to verify the specificity and
activity of our Duxbl polyclonal anti-
bodies. After preincubation with GST-
H1 and GST-H2 fusion proteins, the
purified Duxbl polyclonal antibodies
did not recognize the previously identi-
fied Duxbl proteins in adult ovary and
overexpressed Duxbl-V5 fusion pro-
teins (Fig. 2C). However, antibodies
preincubated with GST proteins could
recognize Duxbl proteins in adult ov-
ary, overexpressed Duxbl-V5 fusion
proteins, and purified 6His-Duxbl
fusion proteins. This result verifies the
activity and  specificity of our
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Lu Li Te Ov
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Fig. 2. Expression profiles of Duxbl and Duxbl-s transcripts and Duxbl protein. A: The expres-
sion levels of Duxbl and Duxbl-s transcripts in adult mouse tissues were analyzed by reverse
transcriptase-polymerase chain reactions (RT-PCRs). Expression level of actin was used as an
internal control. B, brain; H, heart; Lu, lung; Li, liver; Sp, spleen; Ki, kidney; Mu, skeletal
muscles; Ut, uterus; Eye, eye; PI, placenta; Te, testis; Ov, ovary. B: Purified Duxbl fusion protein
containing N-terminal 6 histidine residues (6His-Duxbl) and equal-amount of total proteins
extracted from indicated adult tissues were analyzed by Western blotting using affinity-purified
Duxbl polyclonal antibodies. C: Analyzing the specificity of purified Duxbl polyclonal antibodies.
The purified Duxbl polyclonal antibodies were preincubated with purified GST-H1 and GST-H2
fusion proteins (Ab +H1+H2) or with GST proteins only (Ab +GST). Total proteins extracted
from adult ovaries and Hela cells transfected with Duxbl-V5 fusion protein expression vectors
(Duxbl-V5), or purified 6His-Duxbl fusion proteins were analyzed by Western blotting using two
different pretreated antibodies. Position of 38-kDa protein bands representing Duxbl proteins
was indicated by arrow.

homemade affinity-purified Duxbl poly-
clonal antibodies.

Duxbl Expression Patterns in
Gonads

Because Duxbl is predominantly
expressed in adult ovary and slightly

expressed in adult testis (Fig. 2A), we
examined Duxbl expression levels in
embryonic and postnatal gonads by RT-
PCRs. In female gonads, Duxbl tran-
scripts are observed from embryonic
day 12.5 (E12.5) until birth (Fig. 3A).
After birth, Duxbl expressions in the
ovaries are found to be high until adult-

hood. In male gonads, Duxbl transcripts
are also detected from E12.5 until birth
(Fig. 3B). After birth, Duxbl expressions
peaked at day 7 and returned to low lev-
els from day 21 until adulthood. Fur-
thermore, the expression patterns of
Duxbl-s transcripts are similar to but
lower than those of Duxbl transcripts
(Fig. 3A,B). In addition, low levels of
Duxbl transcripts are also detected in
the mesonephros (data not shown).
Because no Duxbl expression is
detected in mouse Leydig (TM3), Sertoli
(TM4), and spermatocyte (GC-2) cell
lines (data not shown), we suggest that
Duxbl expresses in germ cells. To verify
this suggestion, we performed quantita-
tive RT-PCRs in male gonads. Results
of real-time RT-PCRs confirm the
increases of Duxbl expressions after
birth. Duxbl expressions in male testes
peak at day 7 (Fig. 3C), while male gon-
ocytes exit cell cycle arrest and enter a
wave of spermatogonia proliferation.
Duxbl expressions were seen decreas-
ing from day 15 to adulthood. Before
birth, there is a Duxbl expression peak
with a moderate expression level
observed around E13.5, a time for rapid
proliferations of male germ cells. After
this time, the proliferations of male
germ cells slow down and enter mitotic
arrest at around E16.5 (Olaso and Hab-
ert, 2000). Results of quantitative RT-
PCRs suggest high Duxbl expressions
in proliferating male germ cells includ-
ing gonocytes and spermatogonia.

We further characterized Duxbl
expressions in adult testis by in situ
hybridizations to decipher the cellular
localizations of Duxbl transcripts. In
adult testis sections, strong Duxbl tran-
script signals are only detected in sper-
matogonia from stage X to XII seminif-
erous tubules (Fig. 4A). However, we
did not detect any Duxbl signal in post-
meiotic cells of testis including sperma-
tocytes and spermatids. The Duxbl
expressions in spermatogonia and the
absence in other postmeiotic cells are
also confirmed by RT-PCRs of germ
cells isolated from distinctive stages
(data not shown). Results of in situ
hybridizations in adult testis (Fig. 4A)
are identical to results of RT-PCRs from
testis cell lines, because we could not
detect Duxbl expression in Leydig and
Sertoli cells, and in round spermatids
(data not shown). Pang and his co-
workers also identified differential
expressions of 1110051B16Rik gene in
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Fig. 3. Analyses of expression levels and profiles of Duxbl and Duxbl-s transcripts during

gonad developments. A,B: The expression levels

of Duxbl and Duxbl-s transcripts in female (A)

and male (B) gonad developments were analyzed by reverse transcriptase-polymerase chain
reactions (RT-PCRs). Total RNAs were extracted from ovaries (A) or testes (B) from different
embryonic days (E12.5 to E19.5), newborn mice (NB), and mice at different postnatal days (7d
to 56d). Expression levels of actin were used as internal controls. C: Analysis of Duxbl expres-
sion levels in testes by real-time RT-PCRs. The relative expression levels of Duxbl to GADPH
transcripts in testes from different embryonic and postnatal days were determined. The relative
expression levels were shown after comparison with the expression level of 7-day-old testes.

spermatogonia by microarray and
quantitative RT-PCR at different stages
of spermatogenesis (Pang et al., 2003).
Furthermore, we performed in situ
hybridizations to find cells that specifi-
cally express Duxbl in adult ovary. In
adult ovary sections, weak expressions
of Duxbl transcripts are found in the
oocytes of primordial follicles, but
strong expressions are seen in the
oocytes of primary and secondary fol-
licles (Fig. 4B). These results indicate
that Duxbl are specifically expressed in
oocytes during oogenesis and in sper-
matogonia during spermatogenesis.

We next examined the in vivo local-
izations of Duxbl proteins in 2-week-old
and adult ovaries by immunohisto-
chemistry using homemade affinity-
purified Duxbl polyclonal antibodies.
Results of immunostained ovary sec-
tions show that Duxbl proteins are spe-

cifically present in oocytes of primor-
dial, primary, secondary, and antral
follicles (Fig. 5). These results of in vivo
Duxbl protein localizations are consist-
ent with results of in situ hybridizations
(Fig. 4B), because we obtain oocyte-spe-
cific signals of Duxbl transcripts and
Duxbl proteins in the same types of fol-
licles in both cases.

Subcellular Localizations of
Duxbl and Duxbl-s Proteins

We used the same homemade Duxbl
polyclonal antibodies to examine the
subcellular localizations of overex-
pressed epitope-tagged Duxbl and
Duxbl-s proteins, respectively. Results
of immunofluorescence reveal that the
overexpressed Duxbl-V5 and FLAG-
Duxbl-s fusion proteins are both re-
stricted to the nuclei of transfected cells

(Fig. 6). We observed the same subcellu-
lar localizations of Duxbl and Duxbl-s
fusion proteins using commercial anti-
V5 and anti-FLAG monoclonal antibod-
ies, respectively (data not shown).
These results indicate that both overex-
pressed Duxbl and Duxbl-s proteins
contain the nuclear localization signal
(NLS). Although the amino acid resi-
dues of homeodomains from various
homeodomain proteins show a high
degree of conservation, NLSs of homeo-
domain proteins are not identical. A
common theme of their NLSs is the ba-
sic amino acid residues at two ends of
homeodomains (Ploski et al., 2004;
Ostlund et al., 2005). The first (H1) and
the second (H2) homeodomains of
Duxbl protein contain 8 and 6 lysine/ar-
ginine residues at their two ends,
respectively (Fig. 1D). In addition, the
human DUX4 protein also contains 6
and 7 lysine/arginine residues at two
ends of its H1 and H2, respectively (Fig.
1D). Previously, DUX4 protein has been
shown to transactivate PITX1 expres-
sion (Dixit et al., 2007). Because Duxbl
and Duxbl-s proteins contain similar
lengths of basic residues as DUX4 pro-
tein at two ends of their homeodomains
(Fig. 1D) and both of them localize in
the nuclei (Fig. 6), they might transacti-
vate downstream gene(s) as DUX4 pro-
tein. However, overexpressing Duxbl
proteins in C2C12 cells could not trans-
activate Pitx] expression (data not
shown).

Duxbl Expression Patterns in
Embryonic Development

Because Duxbl transcripts are predomi-
nantly restricted in oocytes of ovary
(Fig. 4B), Duxbl expressions during em-
bryonic development were further
determined. Duxbl transcripts are first
detected in unfertilized eggs then con-
tinued to blastocysts but not in cumulus
cells (Fig. 7A). After implantation,
Duxbl expressions in embryos are seen
decreased from embryonic day 11.5
(E11.5) to 17.5 (E17.5), and Duxbl-s
shows similar expression pattern (Fig.
7B). Furthermore, whole-mount in situ
hybridizations were used to identify
Duxbl transcripts in developing mouse
embryos from E9.5 to E12.5. The Duxbl
transcripts are detected in forelimb,
hindlimb, and tail beginning from E9.5
and maintained to E12.5 (Fig. 7C-E).
Duxbl expressions in limbs were
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Fig. 4. Identifying Duxbl transcripts in gonads by in situ hybridizations. A,B: The localizations of Duxb/ transcripts were analyzed in adult testis
(A) and 10-day-old ovary (B). Adjacent sections were labeled with digoxigenin-labeled anti-sense (left panel) and sense probes (middle panel), or
stained with hematoxylin and eosin (H&E, right panel). Duxbl transcripts were only detected in spermatogonia (indicated by arrows) of testis (A)
and in oocyte of primordial (Pr), primary (P), and secondary (S) follicles in ovary (B). Scale bars = 50 pm.

further detected by section in situ
hybridization and Alcian blue staining.
Duxbl signals are localized in muscle
cells (data not shown). Furthermore,
in vivo Duxbl protein expressions were
analyzed by immunohistochemistry.
Strong Duxbl protein signals are
detected in muscle cells of limbs at
E13.5 embryo (Fig. 7F), while myotubes
begin to form. Especially, Duxbl protein
signals are detected in the fiber-like
muscle cells but not in the mononuclear
cells expressing MyoD proteins (Fig.
7G). These results indicate that Duxbl
proteins are expressed in limbs and
tail during embryo development and in
differentiated myocytes but not in
myoblasts.
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Duxbl Expressions During
Limb Development

During muscle development in limbs,

muscle progenitor cells from somite Fig. 5. Identifying Duxbl proteins in 2-week-old and adult ovaries by immunohistochemical analy-
migrate into limb bud. where theyv pro- sis. A-D: Duxbl proteins in 2-week-old (A,B) and adult (C,D) mouse ovary sections were probed
. 187 ! ud W_ yP using affinity-purified Duxbl polyclonal antibodies (A—C) and normal rabbit immunoglobulin G (D),
liferate, express myogenic determina- egpectively. Duxbl proteins are specifically present in oocytes of primordial (Pr), primary (P), sec-
tion factors and  subsequently ondary (S), and antral follicles (AnF) as indicated. Scale bars = 50 pm.




>

Anti-Duxbl DAPI Merge

Fig. 6. A,B: Subcellular localizations of overex-
pressed Duxbl and Duxbl-s proteins. Duxbl-V5
(A) and FLAG-Duxbl-s (B) fusion proteins were
overexpressed in Hela cells by transfection of
Duxbl-V5 and FLAG-Duxbl-s expression vectors,
respectively. The overexpressed Duxbl-V5 or
FLAG-Duxbl-s proteins were detected by affinity-
purified anti-Duxbl polyclonal antibodies (left
panel). Cell nuclei were stained with DAPI (mid-
dle panel). Images of left and middle panels
were merged (right panel).
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Fig. 7. Identifying Duxbl expressions during mouse development by reverse transcriptase-polymerase chain reaction (RT-PCR), whole mount in
situ hybridization, and immunohistochemical analysis. A,B: Expressions of Duxbl and Duxbl-s transcripts in preimplantation (A) and postimplanta-
tion (B) embryos were analyzed by RT-PCRs. A: Cu, cumulus cells; UF, unfertilized eggs; F, fertilized eggs; 2C, two-cell embryos; MO, morula; BL,
blastocysts. B: Total RNAs were extracted from postimplantation embryos at embryonic day 11.5 (E11.5), 13.5 (E13.5), and 17.5 (E17.5), respec-
tively. Amplifications without RNA served as negative controls (—). C-E: Identifying Duxbl/ expressions in different embryos at embryonic day 9.5
(E9.5), 11.5 (E11.5), and 12.5 (E12.5) by whole-mount in situ hybridizations, respectively. t: tail; fl: forelimb; hl: hindlimb. F,G: Identifying Duxbl and
MyoD protein expressions in dorsal sections through forelimb of 13.5-day embryo by immunohistochemical analysis using anti-Duxbl (F) and anti-
MyoD (G) antibodies, respectively. The boxed regions in small figures were amplified. H: Analyzing Duxb/ and MyoD expression levels by RT-PCRs
during embryonic and postnatal limb developments. Total RNAs were extracted from limbs at embryonic day 12.5 (E12.5), 15.5 (E15.5), and 17.5
(E17.5), and at postnatal day 3 (3d) and adult, respectively. Expression levels of actin were used as internal controls. Scale bars = 50 pm.
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Fig. 8.

differentiate into skeletal muscles.
MyoD and myogenin (MyoG) are first
detected in the proximal regions of both
hindlimb and forelimb at embryonic
day (E) 11.5 embryo and later accumu-
lated in the differentiated muscle
masses, continuously expressed in fetal
skeletal muscles (Sassoon et al., 1989).
Although expressions of Duxbl and
MyoD are both continuous from E12.5

to postnatal stage (3d) in limbs by RT-
PCR analyses (Fig. TH), Duxbl expres-
sions in limbs are largely increased
from E12.5 to E15.5 and maintained in
high level to postnatal (3d) stage, but
almost undetectable in adult muscles
by RT-PCR analyses (Fig. 7TH). These
results suggest that Duxbl expressions
are low in myoblast proliferation stage
but increase largely following myotube

Identifying Duxbl and MyoD protein expressions in embryonic muscles. A-C: Duxbl and MyoD proteins were detected on parasagittal
sections of 11.5-day embryo (A) and transverse sections of 12.5-day embryo (B,C) by immunohistochemistry. A: High magnifications of the boxed
regions in the left panels were shown in the right. B,C: High magnification of the boxed regions in the left panels of epaxial (E), hypaxial (H), and
limb (L) muscles were shown in the middle and right panels as indicated. FL, forelimb; NT, neural tube. Scale bars = 50 pum.

formation, so Duxbl may play a role in
myogenesis during embryonic limb
development.

Duxbl Protein Expressions in
Trunk Myogenesis
During embryogenesis, skeletal mus-

cles in the trunk and limbs are both
derived from somites (Tajbakhsh and
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Fig. 9.
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Identifying Duxbl and MyoD protein expressions in developing muscles. Duxbl (A) and MyoD (B) proteins were detected on transverse

sections of 13.5-day embryo by immunohistochemistry. A,B: High magnification of the boxed regions in the left panels of epaxial (E), hypaxial (H),
and limb (L) muscles were shown in the middle and right panels as indicated. FL, forelimb. Scale bars = 50 pm.

Buckingham, 2000). During myotome
development, MyoG and MyoD are de-
tectable at E10.5 (Cusella-De Angelis
et al., 1992), while terminally differenti-
ated muscle cells could already be identi-
fied in the myotome. To decipher the
Duxbl protein expressions during myo-
tome development in advance, we used
immunohistochemistry on parasagittal
sections of E11.5 embryos. Duxbl protein
is not detected in somite (Fig. 8A). How-
ever, the myoblast marker gene prod-
ucts, MyoD proteins, are expressed in
the myotomes. To further confirm the
expressions of Duxbl proteins during
skeletal myogenesis in the trunk and
limb, we used immunohistochemistry on
transverse sections of embryo at E11.5
with antibodies react with MyoD and
Duxbl proteins, respectively. In trans-
verse sections of the same embryo,
MyoD-positive cells are also observed in
myoblasts of developing limbs and
somite. However, no Duxbl-expressing

cells are present in transverse sections
of the same E11.5 embryos (data not
shown). In further embryonic develop-
ment, Duxbl is seen expressed in the
epaxial, hypaxial, and forelimb muscles
in E12.5 embryo (Fig. 8B), similar to
MyoD (Fig. 8C). However, the intensities
of Duxbl proteins are less than MyoD
proteins in all muscle-forming regions,
especially in limb muscles. After com-
paring stained cell morphology, Duxbl
proteins are obviously stained in fewer
elongated myocytes and immature myo-
fibrils (Fig. 8B). However, MyoD pro-
teins are detected in mononuclear myo-
cytes (Fig. 8C). These results suggest
that Duxbl expressions are low in limb
myoblast proliferation stage, embryonic
day 12.5. After myoblast proliferation
stage, at £13.5 embryo, myoblasts have
clearly acquired a spindle-shaped mor-
phology, and considerably more and lon-
ger myofibrils have now been formed. In
E13.5 embryonic transverse sections,

Duxbl proteins are expressed in in-
creased number of cells, virtually includ-
ing all of the newly formed primary
fibers, present in both body wall and
limbs (Fig. 9A). Strong Duxbl signals are
detected in elongated myocytes and mul-
tinuclear myotubes (Fig. 9A). The distri-
bution and intensity of Duxbl expres-
sions are both similar to those of myosin
heavy chain (MHC; Kablar et al., 1997).
MHC is expressed exclusively in termi-
nally differentiated myotubes and is de-
tectable in the intercostal muscles of the
trunk and the muscle anlagen of fore-
limb. The expressions of both Duxbl and
MHC are increased in E13.5 embryo, in
which stage the myotube formations are
observed.

Duxbl Expressions During
C2C12 Cell Differentiation

To verify that Duxbl is expressed in dif-
ferentiated myocytes but not in
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myoblasts during skeletal muscle for-
mation, we examined Duxbl expres-
sions during in vitro differentiations of
C2C12 cells. Duxbl transcripts are
slightly detected in confluent myocytes,
and seen significantly increased in dif-
ferentiated cells following 2 days in dif-
ferentiation medium as MyoG (Fig.
10A). Because Duxbl exhibits similar
expression patterns as MyoG during
C2C12 cell differentiation, we suggest
that Duxbl also play a role in myoblast
differentiation and/or fusion. Our dou-
ble immunofluorescence data also show
the presence of Duxbl protein signals in
differentiating cells and clearly located
in the nuclei of multinuclear myotubes
(Fig. 10B), similar to results of in vivo
immunohistochemistry analyses (Figs.
7F, 8B, 9A). However, MyoD proteins
are stained strongly in small nuclear
myoblasts and myocytes, while only
slightly in myotubes (Fig. 10B). From
the above results, we conclude that
Duxbl is expressed in myotubes but not
in proliferating myoblasts during in
vitro differentiation of myoblasts and in
vivo skeletal muscle formation. Because
the expression of Duxbl is downstream
of MyoD and seems parallel to MyoG,
whether expression of Duxbl influences
MyoD or MyoG or other muscle specific
genes to affect myogenesis need further
characterizations. C2C12 can be used
as a model cell line to identify the mo-
lecular mechanism of Duxbl influencing
myoblast differentiation or how Duxbl
interact with the myogenic regulatory
factors to regulate myogenesis.

In brief, Duxbl is a mouse double
homeobox gene that contains introns.
The Duxbl homeodomain exhibits the
maximum identities to those of human
DUX4 gene. From the homeodomain
similarity, we suggest that Duxbl is the
ortholog of human DUX4, which is the
candidate gene to cause FSHD. How-
ever, the exact expression pattern of
DUX4 in human development or during
myogenesis is not detected and might
be undetectable, because DUX4 protein
cannot be obtained from normal adult
tissues. Studying the expression profile
of a mouse double homeobox gene,
Duxbl, can facilitate the understanding
of the functions of double homeobox
genes including DUX4 during develop-
ment. In addition, the characterization
of Duxbl expression during myogenesis
might help in understanding the molec-
ular mechanism of FSHD. During

A

PMB CMB D2 D3 D5

Fig. 10. Identifying Duxbl/, MyoD, and MyoG expressions in differentiated and undifferentiated
C2C12 cells. A: Expression levels of Duxbl, MyoD, and MyoG transcripts were determined by
reverse transcriptase-polymerase chain reactions (RT-PCRs) during C2C12 differentiation. Total
RNAs were extracted from proliferating myoblasts (PMB), confluence myoblasts (CMB), and dif-
ferentiating myocytes cultured in differentiation medium for 2, 3, and 5 days (D2, D3, D5),
respectively. Expression levels of actin were used as internal controls. B: Double immunofluores-
cence analysis of Duxbl and MyoD expressions in C2C12 cells. C2C12 cells were incubated in
growth medium as proliferating myoblasts (PMB) and in differentiation medium for 6 days (D6)
as differentiating myocytes, respectively. They were analyzed by double immunofluorescence
with anti-Duxbl and anti-MyoD antibodies. Signals of Duxbl proteins were detected with Texas
red-conjugated secondary antibodies (Duxbl) and signals of MyoD were detected with fluores-
cein isothiocyanate (FITC) -conjugated secondary antibodies (MyoD). Cell nuclei were stained
with 4’-6-diamidino-2-phenylindole (DAPI). Scale bars = 50 um.
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embryo development, Duxbl is predomi-
nantly expressed in differentiated myo-
cytes during embryo skeletal myogene-
sis. The myofibers of epaxial, hypaxial,
and limb express Duxbl proteins, first,
from E12 embryo. However, Duxbl is
barely detectable in the adult limb mus-
cle. Because DUX4 protein can be
detected in primary myoblasts ext-
racted from FSHD patients but not
from normal people, we suggest that an
increase in the expression of embryo
protein, mDux in adult tissue may
develop a muscular dystrophy with
features characteristic of the human
disease. In addition to skeletal myogen-
esis, Duxbl is also expressed in germ
cells, especially in oocytes and sperma-
togonia, during gonad development.
Our results suggest that Duxbl is im-
portant in germ cell development. Our
future experiments would be directed
toward characterizing the exact func-
tion of this gene using transgenic or
conditional knockout analysis.

EXPERIMENTAL
PROCEDURES

Animals

Mice were maintained in a specific
pathogen-free environment at the ani-
mal housing in Chung Shan Medical
University. All experimental proce-
dures were conducted in accordance
with the guidelines of the institutional
animal committee and received protocol
number 401.

RNA Isolations and RT-PCRs

Total RNAs were extracted using Trizol
reagent (Life Technologies) from vari-
ous mouse tissues, embryos at different
stages, and various mouse cell lines.
Quantities and purities of RNAs were
determined by ultraviolet absorbance
(DU 800; Beckman Coulter) and by gel
electrophoresis. Five or two micro-
grams each of total RNAs were reverse
transcribed using Superscript I system
(Life Technologies) and oligo-dT primer.
P1/GSP1 (P1, 5-GAGCTGCAGTAC-
TGGCCTACTG-3; GSP1, 5-CTGG-
GAGGACTGAAGTAGTGTGGT-3') and
P1/GSP2 (GSP2, 5-ATGATTATGCA-
GGTCTGATGTG-3') primer pairs were
used to determine the expressions of
Duxbl and Duxbl-s transcripts (Fig.

1A), respectively. As positive controls,
the expression of B-actin gene was
detected using the following primers:
Actin F: 5-GAGACCTTCAACACCC-
CAGC-3 and Actin R: 5-AGGAAG-
GCTGGAAAAGAGCC-3'.

Cloning the Full-Length
cDNAs

Because Duxbl and Duxbl-s transcripts
are predominantly expressed in adult
ovary, total ovary RNAs were used to
characterize the full-length Duxbl and
Duxbl-s transcripts. The 5 and 3’ end
sequences of Duxbl and Duxbl-s tran-
scripts were obtained by 5 and 3
RACE-PCRs using the SMART RACE
c¢cDNA amplification kit (Clontech),
respectively. Total RNAs were reversely
transcribed using 5’ or 3’ CDS primers.
The resultant cDNA products were sub-
jected to PCR for generating the 5’ and
3’ Duxbl and Duxbl-s cDNA fragments,
respectively, using transcript-specific
primers (GSP1, GSP2, or GSP3: 5'-
AGCAGGAGCAGGATAAACCTAGAG-
TTAAAGA-3') and UPM primer. The
PCR products were then subjected to
nested PCR using transcript-specific
primers (GSP1 or GSP2) and nested
universal primer A. Finally, the PCR
products were analyzed on 1.2% aga-
rose gels, subcloned into pGEM-T Easy
vectors (Promega) and then sequenced.

Real-Time PCRs

Total RNAs were extracted from testes
at different stages using TRI Reagent
(Sigma-Aldrich). Primers for real-time
PCRs were designed for mouse Duxbl
and GAPDH transcripts. The forward
primer for Duxbl was 5-GCATCTCT-
GAGTCTCAAATTATGACTTG-3, and
the reverse primer was 5-GCGTT-
CTGCTCCTTCTAGCTTCT-3'. The for-
ward primer for GAPDH was 5'-
TGTGTCCGTCGTGGATCTGA-3, and
the reverse primer was 5-CCTGC-
TTCACCACCTTCTTG-3'. Complemen-
tary DNAs were synthesized from RNA
samples using Superscript II RNase H-
minus reverse transcriptase (Invitro-
gen) according to the manufacturer’s
protocol, and then cDNAs were used as
templates for real-time PCR assays
using the ABI Prism 7000 Sequence
Detection System (Applied Biosys-
tems). Threshold (Ct) values for Duxbl
and GADPH transcripts were deter-

mined using Prism SDS software ver-
sion 1.0 (Applied Biosystems).

Expressions and Purifications
of Duxbl Homeodomain
Fusion Proteins

The coding regions of Duxbl N-terminal
homeodomain (H1) and C-terminal
homeodomain (H2) were PCR ampli-
fied, gel-purified, and then subcloned
into pGEX-6P-2 expression vectors
(Amersham). After induction, the
expressed  glutathione-S-transferase
(GST) fusion proteins, GST-H1 and
GST-H2, were purified using Glutathi-
one Sepharose beads (Amersham). The
forward primer for H1 homeodomain
was 5-CGGAATTCTTGAGCTGAGC-
TGCAGT-3', and the reverse primer was
5-CCCTCGAGCTATGCAAACTCTGCT
TG-3'. The forward primer for H2 homeo-
domain was 5-CGGAATTCTTAGAGT-
TAAAGAAGCTAGAAG-3, and the re-
verse primer was 5-GCGGCC-GCTTA
AGTTTTCTGAGTGTTCTGTCC-3'.

Production of Anti-Duxbl
Polyclonal Antibodies and
Western blotting

The Duxbl coding region was PCR
amplified, gel-purified, and then
inserted into the pAE expression vector
(Ramos et al., 2004). The Duxbl fusion
proteins containing 6 histidine residues
at the N-terminus (6His-Duxbl) were
overexpressed and then purified using
His-bind resin (Novagen), before being
used to immunize rabbits for genera-
tion of anti-serum against Duxbl
proteins. These anti-Duxbl polyclonal
antibodies were purified by affinity
chromatography using 6His-Duxbl
fusion proteins. To test the immunospe-
cificity of purified anti-Duxbl antibod-
ies, we performed a blocking assay
using antibodies pretreated with puri-
fied GST-H1 and GST-H2 proteins or
GST protein only. To detect Duxbl pro-
tein in various mouse tissues, equal
amount of total proteins extracted from
various adult mouse tissues were sepa-
rated in 12% sodium dodecyl sulfate-
polyacrylamide gels and electro-trans-
ferred onto polyvinylidene fluoride
membranes (Millipore). Expression lev-
els of Duxbl proteins were then deter-
mined by Western blotting using puri-
fied anti-Duxbl polyclonal antibodies.



7}
(2]
©
=
<
=
>
o]
o
o]
~—
=
=
=
(=
=)
o
P
>
D
=

CHARACTERIZATION OF A MOUSE DOUBLE-HOMEOBOX GENE 939

Whole-Mount In Situ and
Section In Situ
Hybridizations

Expressions of the Duxbl gene were an-
alyzed by in situ hybridizations using a
660-bp Duxbl cDNA fragment (265-
925), which encodes the coding region
of Duxbl protein. The 660-bp Duxbl
cDNA fragments (position 265-925)
were subcloned into pGEM-T Easy vec-
tors. The sense and anti-sense ribop-
robes were prepared by in vitro tran-
scriptions using SP6 and T7 RNA
polymerases with digoxigenin (Dig)-
UTP (Boehringer Mannheim), respec-
tively. Some serial sections were
stained with hematoxylin and eosin
(Sigma-Aldrich).

Testes from adult mice and ovaries
from 10-day-old mice were collected
and fixed in 4% paraformaldehyde for
in situ hybridizations. They were dehy-
drated, embedded in paraffin, and then
serially sectioned. Five- or 7-um sec-
tions were cut and counterstained with
methyl green. These sections were then
mounted before observation. For whole-
mount in situ hybridizations, embryos
were rehydrated and bleached in PBT
containing 6% hydrogen peroxide.
Whole-mount in situ hybridizations of
embryos was performed as previously
described (Correia and Conlon, 2001).

Immunohistochemistry

Embryos of FVB mice and adult ovaries
were fixed in 4% paraformaldehyde and
embedded in paraffin according to
standard protocols. Adjacent 6-pm sec-
tions were used for comparative analy-
sis. Sections were deparaffinized and
rehydrated, and some of them were
stained with hematoxylin and eosin.
Sections were incubated with a 1:300
dilution of purified anti-Duxbl polyclo-
nal antibodies or with 1:500 dilution of
mouse monoclonal anti-MyoD antibody
clone 5.8A (IMGENEX). After washing,
sections were incubated with a 1:200
dilution of biotinylated goat anti-rabbit
IgG or biotinylated goat anti-mouse
IgG followed by incubation with horse
radish peroxidase-streptavidin com-
plexes. Positive signals were visualized
by incubation with diaminobenzidine
(DAB), a kit from Molecular Probes,
and sections were then lightly counter-
stained with methyl green (Sigma-
Aldrich). Negative controls consisted of

identical reactions with normal rabbit
immunoglobulin G as the primary
antibodies.

Cell Cultures

C2C12 cells were kept in DMEM sup-
plemented with 10% fetal bovine se-
rum. Differentiation in C2C12 cells was
induced by replacing the medium with
differentiation medium (2% horse se-
rum in DMEM). HeLa cells were kept
in alpha-MEM supplemented with 10%
fetal calf serum, 1% nonessential amino
acids, and 1% sodium pyruvate.

Subcellular Localizations of
Duxbl and Duxbl-s Proteins

The coding regions of Duxbl and Duxbl-
s were inserted into pcDNA3.1/V5-His
(Life technologies) and pFLAG-CMV2
(Sigma-Aldrich) to produce the Duxbl-
V5 and FLAG-Duxbl-s expression vec-
tors, respectively. The expression vec-
tors were transfected into HeLa cells
using Lipofectamine 2000 (Invitrogen)
according to the manufacturer’s in-
structions. After transfection, cells
were immunostained with a 1:500 dilu-
tion of purified anti-Duxbl polyclonal
antibodies and then a 1:200 dilution of
fluorescein isothiocyanate (FITC) -con-
jugated goat anti-rabbit immunoglobu-
lin. After immunostaining, cell nuclei
were counterstained with 4'-6-diami-
dino-2-phenylindole (DAPI; Sig-ma-
Aldrich). The fluorescent signals were
obtained by fluorescence microscopy
(Axioplan, Zeiss).

Immunocytochemistry

Expressions of Duxbl and MyoD pro-
teins in C2C12 cells were examined by
immunocytochemistry. C2C12 myo-
blasts were grown in 4-well chamber
slides and were allowed to differentiate
into myotubes. The cells were then fixed
in 4% paraformaldehyde followed by
permeable with 0.1% Triton. Cells were
blocked with 1% bovine serum albumin
in phosphate buffered saline (PBS).
C2C12 cells were immunostained with
rabbit anti-Duxbl (1:500) polyclonal
antibodies and mouse monoclonal anti-
MyoD (1:500) antibody. Cells were
washed with PBS, incubated with
FITC-conjugated chicken anti-mouse
IgG antibodies and Texas red-conju-
gated goat anti-rabbit IgG antibodies at

a 1:300 dilution, and then counter-
stained for nuclei with DAPI. The fluo-
rescent signals were obtained by fluo-
rescence microscopy.
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