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Abstract 

RhoGDI, a Rho GDP dissociation inhibitor, induced hypertrophic growth and cell migration in a 

cultured cardiomyoblast cell line, H9c2. We demonstrated that RhoGDIplays a previously 

undefined role in regulating Rac1 expression through transcription to induce hypertrophic growth 

and cell migration and that these functions are blocked by the expression of a dominant-negative 

form of Rac1. We also demonstrated that knockdown of RhoGDIexpression by RNA 

interference blocked RhoGDI-induced Rac1expression and cell migration. We demonstrated that 

the co-expression of ZAK and RhoGDIin cells resulted in an inhibition in the activity of ZAK 

to induce ANF expression. Knockdown of ZAK expression in ZAK-RhoGDI-expressing cells 

by ZAK-specific RNA interference restored the activities of RhoGDI.  

 

Keywords: cell migration/hypertrophic growth/ RhoGDI/ZAK 
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Background 

The mitogen-activated protein kinase (MAPK) signaling pathway consists of the 

sequentially acting upstream kinases MAPK kinase kinase (MAP3K) and MAPK kinase 

(MAP2K), and the downstream MAPKs, p38MAPK, extracellular signal-regulated kinase 

(ERK1/2), and c-jun N-terminal kinase (JNK). The mixed lineage kinases are a family of 

serine/threonine kinases, all of which are classified as MAP3Ks. The seven mixed lineage kinases 

cloned over the past several years can be classified into three subfamilies based on domain 

organization and sequence similarity: the MLKs (MLK1-4), the dual leucine zipper–bearing 

kinases (DLK and LZK), and the zipper sterile--motif (SAM) kinases (ZAKand ZAK) 

(5,10). ZAK can activate the JNK pathway and the nuclear factor B (NFB) pathway (13), and 

it induces JNK activation through a dual phosphorylation kinase, JNKK2/MKK7 (21). 

Overexpression of wild-type ZAK induced apoptosis in a hepatoma cell line (13), and a recent 

report indicated that ZAK expression in a rat cardiac cell line, H9c2, induced hypertrophic 

growth and re-expression of atrial natriuretic factor (ANF) (11). ZAK also mediates 

TGF--induced cardiac hypertrophic growth via a novel TGF-signaling pathway (12). In our 

previous study (11), we showed that the leucine zipper of ZAK mediates homodimerization and 

promotes autophosphorylation and JNK activation.  

 

We identified RhoGDIRho GDP dissociation inhibitor beta) as a ZAK effector. RhoGDI, 

also known as Ly-GDI or D4-GDI, belongs to a family of Rho GDP dissociation inhibitors, and it 
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is thought to regulate the activity and localization of Rho family proteins (1,4,6,8). The 

RhoGTPase family includes Rho, Rac, and Cdc42, which differentially regulate the actin 

cytoskeleton (3,17,18) and function as molecular switches in cellular signal transduction by 

alternating between an inactive GDP-bound form that is maintained in cytosolic complexes with 

GDIs and a GTP-bound form that usually associates with the plasma membrane and interacts 

with downstream target proteins therein (19,20). RhoGTPases regulate the reorganization of the 

actin cytoskeleton and the integrity of the integrin-associated adhesion complexes (14). Rho 

facilitates stress fiber and focal adhesion assembly, Rac regulates the formation of lamellipodia 

and membrane ruffles at the leading edge of migrating cells, and Cdc42 triggers filopodia at the 

cell periphery (9). RhoGDIs regulate RhoGTPase activity by inhibiting GDP dissociation to keep 

RhoGTPases in an inactive state.  

A recent study indicated that stimulation of T lymphocytes and myelomonocytic cells with 

phorbol esters leads to RhoGDIphosphorylation on serine/threonine residues (7), raising the 

question of whether RhoGDIis involved in a signal transduction pathway in these cells. Thus, 

RhoGDImay play numerous roles in the regulation of biological activities; however, many 

details of the regulatory roles of RhoGDIremain to be elucidated. 

  

Materials and methods 

 

Northern blot analysis   



5 

 

 

Trizol reagents (Life Technologies) were used to isolate total RNA from H9c2 cells transiently 

transfected with the recombinant RhoGDI plasmids or from cells stably expressing RhoGDI. 

Total RNA (20 g) was separated on a formaldehyde agarose gel, transferred to a nylon filter, 

and then hybridized with a probe corresponding to the full-length Rac1 cDNA labeled using the 

NEBlot random labeling kit (New England BioLabs) in the presence of [-
32

P]dCTP. The blot 

was washed with SSC/SDS solutions (Sodium Chloride, Sodium Citrate/SDS) before 

autoradiography. Ethidium bromide staining was used to check the integrity of all samples. 

 

Wound healing assay  

 

H9c2 cells seeded on 10-cm plates were cultured to confluency. They were then scratched with a 

200l pipette tip and further incubated in DMEM supplemented with 10% FBS. Images were 

taken at 24, 48, and 72 h with a Zeiss Axiovert 200 microscope. The Image-Pro image analysis 

system was used to measure the lesion area. The data were expressed as the percentage of 

recovery (WC%) using the equation: WC% = [1 – (wounded area at Tt /wounded area at T0)] × 

100%, where Tt is the number of hours post-injury and T0 is the time of injury.  

 

Membrane and cytosol fractionation 
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H9c2 cells were cultured with 1g/ml doxycycline for 48 h and then treated with lysis buffer (20 

mM Tris-HCl, pH 7.5, 100 mM NaCl, 5 mM EDTA, 2 mM PMSF, 1× protease inhibitor) at 4
o
C 

for 30 min. The samples were centrifuged at 500 xg at 4°C for 10 min, and the pellets were 

dissolved in lysis buffer plus 0.1% (w/v) Triton X-100 for the membrane fractions. The 

supernatants were re-centrifuged at 15,000 rpm at 4°C for 20
 
min, and the supernatants were 

saved as cytosolic fractions. 

 

 

 

 

 

 

 

Results  

 

Expression of RhoGDI 

cardiac cells  

 

The RhoGTPases act as molecular switches by cycling between the inactive GDP-bound 

form located in the cytoplasm and an active membrane-associated GTP-bound form. The 
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activities of Rho family proteins are regulated by various proteins, such as guanine nucleotide 

exchange factors (GEFs), GTPase activating proteins (GAPs), and GDIs. The functions and 

binding of RhoGDIto RhoA, Rac1, and Cdc42 are well studied; however, the functions and 

targets for RhoGDI remain unclear, as it binds poorly to RhoA, Rac1, and Cdc42. We therefore 

sought to determine whether RhoGDIstimulates the expression or activities of these GTPases in 

cardiac cells by western blotting. The total RhoA and Cdc42 levels remained the same; however, 

cells overexpressing RhoGDI had increased levels of Rac1 (Figure 1A). Moreover, the 

expression of RhoGDI in H9c2 cells was not affected by the overespression RhoGDI (Figure 

1A). The expression levels of Rac1 may be causally linked to RhoGDI expression or merely an 

epiphenomenon of the selection of a stable clone. If the former is the case, then Rac1 might be a 

functionally important downstream target of RhoGDI. Northern blot analysis of total RNA 

indicated that cardiac cells either stably or transiently overexpressing RhoGDIhad increased 

Rac1 mRNA levels (Figure 1B). We therefore concluded that RhoGDI plays a role in the 

transcriptional regulation of Rac1 and that the increased level of Rac1 mRNA was not a 

secondary effect of the selection of a stable RhoGDI-expressing clone. Rac1 association with 

membranes reflects its biological activity (15). To further address the question of whether 

induction of Rac1 may also influence Rac1 activity, a detergent-insoluble membrane fraction was 

prepared from RhoGDI-overexpressing cells, and the levels of membrane-associated Rac1 were 

determined by western blotting. Both the levels of membrane-associated Rac1 and cytosolic Rac1 

increased in RhoGDI-overexpressing cells (Figure 1C). Furthermore, the membrane-associated 
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and cytosolic forms of Cdc42 remained unchanged in RhoGDI-expressing cells when compared 

to parental cells. We further detect the amount of GTP-bound Rac1 in H9c2 

RhoGDI-overexpressing cells. We found that RhoGDI increased GTP loading in Rac1 (Figure 

1D). Therefore, overexpression of RhoGDIin H9c2 cells increases the level of 

membrane-associated Rac1 and GTP loading in RAC1 by upregulating Rac1 transcripts. 

However, the increase in membrane-associated Rac1 in RhoGDI-expressing cells may be a 

secondary effect of increased expression of Rac1, as we were not able to detect any physical 

interaction between RhoGDI and Rac1 by co-immunoprecipitation. 

We next examined whether Rac1 mediates RhoGDI-induced hypertrophic growth. We 

found that H9c2 cells stably expressing a dominant-negative form of Rac1 (Rac1N17) and 

RhoGDIsignificantly reduced the twofold increase in cell size (Figure 2A) and actin 

organization induced by RhoGDI. Moreover, overexpression of wild-type or a constitutively 

active (V12) Rac1 in H9c2 cells was sufficient to induce hypertrophic growth (Figure 2A) and 

actin organization. These findings indicate that the RhoGDI-induced hypertrophic growth in 

H9c2 cells is mediated through increased expression of Rac1, and probably through increased 

levels of membrane-associated Rac1.  

 

H9c2 cell migration promoted by RhoGDIis Rac1 dependent 

 

Rac1 is able to regulate cell migration (2). To test whether the effect of RhoGDIon cell 
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migration is Rac1 dependent, confluent monolayers of cells stably expressing RhoGDI, 

RhoGDIand Rac1, or RhoGDIand Rac1N17 were scrape-wounded with a sterile plastic 

pipette, and the migration of cells into the wound was monitored. The RhoGDI-expressing cells 

closed the wound area faster than control cells (Figure 2B). RhoGDI-expressing cells that also 

expressed a dominant-negative form of Rac1N17 migrated slower than RhoGDI-expressing or 

RhoGDI- and Rac1-expressing cells (Figure 2B), suggesting that Rac1 plays a key role in 

mediating cell migration in RhoGDI-expressing cells. 

 

RhoGDI-induced cell migration does not correlate with cell proliferation 

 

To determine whether Rac1 might play a role in the RhoGDI-mediated cell cycle arrest, we 

examined the growth rate of cells expressing both RhoGDIand Rac1N17 and found that it was 

substantially slower than the growth rate of RhoGDI-expressing cells or control cells 

(Supplementary Fig. 1). Therefore, the RhoGDI-regulated cell arrest was not mediated through 

increased levels of membrane-bound active Rac1.  

Since the cyclin-dependent kinase inhibitors p21
Waf1/Cip1

 and p27
Kip1

 were expressed in 

RhoGDI-expressing cells at higher levels than they were in control cells, we examined 

p21
Waf1/Cip1

 and p27
Kip1

 levels in RhoGDI- and Rac1N17-expressing cells to study the effects of 

this dominant-negative form of Rac1 on the expression of p21 and p27. RacN17 was unable to 

block the expression of p21
Waf1/Cip1

 and p27
Kip1

 induced by RhoGDIin H9c2 cardiac cells 
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(Supplementary Fig. 2), suggesting that the RhoGDI-induced cell cycle arrest was not mediated 

through Rac1. 

 

Knockdown of overexpressed RhoGDIby siRNA reduces H9c2 cell migration 

 

To this point, our results indicated that RhoGDIstimulates cell migration through the 

induction of Rac1 expression due to a proportional increase in the activity of Rac1 in H9c2 cells. 

To confirm the role of RhoGDIin cell migration, two RhoGDIknockdown cell lines were used 

to assess whether RhoGDIdirectly stimulates Rac1 expression to induce cell migration. The 

specific knockdown of RhoGDIusing siRNA in H9c2 cells was confirmed by immunoblotting 

(Fig. 2C). We found that targeted disruption of RhoGDIby siRNA effectively blocked 

expression of Rac1 (Fig. 2C); therefore, RhoGDIdepletion is associated with Rac1 

downregulation. We used migration assays to confirm the role of RhoGDIin cell migration. 

Cells were seeded in an upper chamber of a Transwell on a porous filter, and the migration 

through the filter pores of H9c2 cells expressing RhoGDIand cells expressing both 

RhoGDIand RhoGDIspecific siRNA was compared. RhoGDI-expressing cells showed 

increased migration compared to parental cells, whereas migration was inhibited in the siRNA 

RhoGDIknockdown cells relative to the RhoGDI-expressing cells (Supplementary Fig. 3). 

These results suggest that RhoGDImay play a critical role in the regulation of Rac1 expression 

and H9c2 cell migration.  
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RhoGDI-induced wound healing is negatively regulated by ZAK 

 

Our experiments demonstrated that RhoGDIincreased the rate of wound closure. However, 

our data also suggested that the physical association of ZAK with RhoGDI and phosphorylation 

of RhoGDI by ZAK could abolish RhoGDIfunction. To identify the regulatory role of ZAK 

on cell migration responses in RhoGDI-expressing cells, a wound-healing assay was performed 

using cells expressing RhoGDI, ZAK and RhoGDI, or ZAKdn and RhoGDI. After wounding, 

control, ZAK-expressing, and ZAKdn-expressing cells closed the gap at a similar rate (Figure 

3A). As demonstrated above, RhoGDI-expressing cells were highly migratory, but ZAK- and 

RhoGDI-expressing cells were substantially slower to close the wound than ZAKdn- and 

RhoGDI-expressing cells. At 36 h post-wounding, control, ZAK-expressing, ZAKdn-expressing, 

and ZAK- and RhoGDI-expressing cells closed the gap by about 20%, 24%, 25%, and 22%, 

respectively (Figure 3B). RhoGDI-expressing cells and ZAKdn- and RhoGDI-expressing cells 

closed 50% and 39% of the gap. These data suggested a negative regulatory role for ZAK in 

RhoGDIcell migratory function.  

To elucidate the role of RhoGDIin controlling the localization of Rac1, we performed 

confocal microscopy. The majority of Rac1 was present in the perinuclear region with some 

present at the plasma membrane of the control, ZAK-expressing, and ZAKdn-expressing cells 

(Supplementary Fig. 4). More Rac1 was present at both the plasma membrane and the perinuclear 
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region in RhoGDI-expressing cells. However, co-expression of ZAK, but not ZAKdn, with 

RhoGDI in H9c2 cardiac cells decreased the amount of Rac1 at the plasma membrane 

(Supplementary Fig. 4). These data also suggested that ZAK might decrease the total amount of 

cellular Rac1, probably due to ZAK binding and phosphorylation of RhoGDI. To determine 

whether ZAK negatively regulates RhoGDIthrough expression of Rac1, especially 

membrane-associated Rac1, we performed western blotting. Consistent with the above 

experiment, membrane-associated Rac1 increased in RhoGDI-expressing cells, whereas, in 

ZAK- and RhoGDI-expressing cells, the levels of membrane-associated Rac1 decreased. 

However, co-expression of ZAKdn and RhoGDI had no such effect (Figure 4A). In this regard, 

it was of interest whether RhoGDI increases the amount of Rac1 at the plasma membrane as a 

consequence of increasing the total cellular levels of Rac1 or whether RhoGDI facilitates the 

translocation of Rac1 to the plasma membrane. We attempted to co-immunoprecipitate RhoGDI 

and Rac1to investigate this possibility; however, the antibody used was insufficient for this 

purpose (data not shown). This suggests that it is unlikely that RhoGDIfacilitates translocation 

of Rac1 to the plasma membrane.  

To test the importance of ZAK in regulating RhoGDI-mediated membrane-associated Rac1 

and hypertrophic growth, we reduced the levels of ZAK using siRNA. We were able to reduce the 

levels of ZAK by expressing two different human ZAK siRNAs: ZAKGRi1 

(ZAK-RhoGDIU6-460i) and ZAKGRi2 (ZAK-RhoGDIU6-1712i) (data not shown). The 

reduced levels of ZAK in these two individual clones were able to restore the levels of 
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membrane-associated Rac1 to levels similar to those of RhoGDI-expressing cells, whereas the 

introduction of a scrambled ZAK siRNA (GRCi) into ZAK- and RhoGDI-expressing cells had 

no effect (Figure 4B). These results confirmed the importance of ZAK as a negative regulator of 

the effect of RhoGDIon the expression of Rac1 and membrane-associated Rac1. We found that 

ZAK was able to regulate ANF expression. We then studied the effects of RhoGDIon the 

regulation of ANF expression by ZAK by examining the levels of ANF mRNA in ZAK- and 

RhoGDI-expressing cells when compared with ZAK-expressing cells. The levels of ANF 

mRNA induced by ZAK were decreased in cells expressing both ZAK and RhoGDI(Fig. 4C). 

We also found that ZAK-RhoGDI cells has less total amount of Rac1 than RhoGDI cells. 

(Figure 4D). This result suggested that RhoGDI negatively regulates the functions of ZAK. 

Moreover, the data presented here (and consistent with our previous studies) indicate that both 

ZAK and RhoGDI may be hypertrophic growth inducers; however, ZAK physically interacts 

with RhoGDI and phosphorylates RhoGDI thus inhibiting the ability of RhoGDI to induce 

Rac1 expression. The levels of Rac1 induced by RhoGDI are associated with the closure rate of 

wound healing (Figure 2B) and hypertrophic growth (Figure 2A), but they are not associated with 

cell cycle inhibition (Supplementary Fig. 1). Thus, RhoGDI appears to play a role in signaling 

pathways regulating Rac1 expression that govern wound healing and hypertrophic growth in 

cardiac cells. 
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Discussion 

 

Upon introduction of RhoGDI into rat cardiac H9c2 cells, the cells exhibited hypertrophic 

growth, had a slower cell cycle, and migrated to a greater extent. We previously demonstrated 

that RhoGDIis phosphorylated by ZAK in vitro. It is striking that the co-expression of ZAK and 

RhoGDI in H9c2 cardiac cells results in the inhibition of the biological functions of RhoGDI 

indicating that not only does RhoGDI possibly physically interact with ZAK, but it may also be 

negatively regulated by ZAK, and this regulation might occur via phosphorylation. These 

phenomena regulated by ZAK were correlated with Rac 1 expression and especially with the 

levels of membrane-associated Rac1 in H9c2 cells.  

In H9c2 cells transiently and stably expressing RhoGDI, the levels of Rac1 transcripts 

increased compared with control cells. In this study, we described these surprising findings and, 
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to our knowledge, the first demonstration that expression of RhoGDI induces Rac1 transcripts 

and increases the levels of membrane-associated Rac1. The results from western blotting and 

confocal microscopy experiments indicate that RhoGDI regulates Rac1 expression, which leads 

to increased levels of membrane-associated Rac1. We propose either that the increased levels of 

membrane-associated Rac1 in RhoGDIcells are merely a consequence of RhoGDI-induced 

expression of Rac1 or that RhoGDI regulates membrane translocation of Rac1.We were unable 

to detect an association between RhoGDI and Rac1 using co-immunoprecipitation; therefore, it 

is unlikely that RhoGDI andRac1 directly interact. However, we still have not ruled out the 

possibility that RhoGDIregulates Rac1 translocation . However, the signaling pathway between 

RhoGDI and Rac1 has not yet been elucidated, and there is currently no evidence that RhoGDI 

can directly bind to any gene promoter. RhoGDI can be translocated into the nucleus upon 

certain stimuli (22), leaving the possibility that RhoGDIcan regulate gene expression directly. It 

is also possible that RhoGDI regulates Rac1 expression via signaling pathway effector proteins. 

Studies have also demonstrated that RhoGDI is cleaved at its N-terminus during apoptosis in a 

caspase-dependent manner and that the cleaved RhoGDI is retained in the nuclear compartment 

(16). This suggests that RhoGDI could function in the nucleus.  

We previously found that RhoGDI was able to associate with a mixed lineage kinase, ZAK, 

resulting in the phosphorylation of RhoGDI. To further study the role of ZAK in regulating the 

activities of RhoGDI, we used a bi-directional tet-on inducible system to express both ZAK and 

RhoGDIin H9c2 cardiac cells. Our results demonstrate that the levels of membrane-associated 
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Rac1 and the hypertrophic growth phenotype were inhibited by co-expression of ZAK and 

RhoGDI; however, we did not observe the inhibitory effect with a dominant-negative form of 

ZAK. Clearly, the kinase activities of ZAK are necessary for the negative regulation of 

RhoGDIfunctions, including cell cycle arrest, hypertrophic growth, alterations in the amount of 

membrane-associated Rac1, and cell migration. Among all the biological functions that are 

regulated by RhoGDI, the phenomena of hypertrophic growth and cell migration are 

Rac1-dependent, whereas the regulation of the cell cycle arrest is Rac1-independent, as shown by 

the results of expression of a dominant-negative Rac1 (Rac1N17) in RhoGDI-expressing cells. 

It should be pointed out that the cell migration phenotype induced in RhoGDI-expressing cells 

seems to result primarily from the rate of migration rather than cell division. Therefore, 

RhoGDImay stimulate cell migration in a manner dissociated from its effects on cell cycle 

progression.  
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Figure Legends 

 

Fig. 1. Effects of RhoGDI on Rac1 expression and subcellular localization of RhoGTPases. (A) 

RhoGDI RhoGDI Rho, CDC42, and Rac1 were detected by western blotting of cell lysates 

from H9c2 cells stably expressing RhoGDI. (B) Total RNA was isolated from H9c2 cells stably 

or transiently expressing RhoGDI. Rac1 transcripts were analyzed by northern blotting. The 
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lower EtBr panels of (B) represent the 28S and 18S loading controls. (C) Membrane (Mem.) and 

cytosolic (Cyto.) fractions from H9c2 control (C) and RhoGDI-expressing cells were analyzed 

by immunoblotting for Rac1, Cdc42, and RhoGDI. (D) GTP loading in Rac1 was determined 

utilized PAK PBD binding assay in H9c2 cells stably expressing RhoGDI.  

 

Fig. 2. RhoGDI-induced hypertrophic growth and cell migration is Rac1-dependent, but 

suppression of cell cycle progression is not. (A) Control H9c2 and H9c2 RhoGDI-expressing 

cells stably transfected with Rac1, Rac1N17, or Rac1V12 were grown in 10% fetal bovine serum 

with doxycycline for three days, and the cell size was determined. (B) Wound-healing assay. The 

cell lines were seeded on plates, as previously described. After reaching confluency, the cell layer 

was wounded with a 200l pipette tip and incubated for 48 h with medium and doxycycline. (C) 

SiRNA knockdown of RhoGDI inhibited RhoGDI-induced Rac1 expression levels in H9c2 

cells. U6-Ci is the scramble control siRNA, and both U6-353i and U6-568i are two specific 

RhoGDI siRNAs.  

 

Fig. 3. ZAK reverses the effects of RhoGDI on the induction of cell migration in H9c2 cells. (A) 

Wound healing assay. H9c2 cells and H9c2 cells ectopically expressing ZAK, dominant-negative 

ZAK (ZAKdn), RhoGDI, ZAK and RhoGDI, or ZAKdn and RhoGDI were seeded onto 

plates. After reaching confluency, the cell layer was wounded with a 200l pipette tip and 

incubated for 72 h with medium and doxycycline. (B) The cell migration capacity at 36 h was 
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estimated by measuring the percentage wound closure (WC%). Values are means (SEM from 

three independent experiments). 

 

Fig. 4. ZAK specifically downregulates the activities of RhoGDI as a consequence of 

decreasing the amount of membrane-associated Rac1. (A) ZAK decreases the levels of 

membrane-associated Rac1 induced by RhoGDI. Control H9c2 and transfected H9c2 cells were 

collected and fractionated into membrane (Mem.) and cytosolic (Cyto.) fractions by 

centrifugation. (B) SiRNA knockdown of ZAK restores the effects of RhoGDI in ZAK- and 

RhoGDI-expressing cells (GRi1 and GRi2) upon Rac1 membrane association. (C) RhoGDI 

inhibits ZAK functions upon the induction of ANF mRNA expression. (D) The effect of 

ZAK-RhoGDI and RhoGDI on total amount of Rac1expression.   

Figure1 
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