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Abstract In this paper, some algebraic properties of autodense languages and pure
autodense languages are studied. We also investigate the algebraic properties concerning
anti-autodense languages. The family of anti-autodense languages contains infix codes,
comma-free codes, and some subfamilies of new codes which are anti-autodense prefix
codes, anti-autodense suffix codes and anti-autodense codes. The relationships among these
subfamilies of new codes are investigated. The characterization of L",n > 2, which are
anti-autodense is studied.

1 Introduction

Both regular languages and disjunctive languages are especially important applications in
the field of formal languages. Recall that every regular language is accepted by a finite
automaton [10]. It is the union of the equivalence classes of a congruence relation of finite
index. Moreover, from the definition of disjunctive language, every disjunctive language
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210 C.-M. Fan et al.

has infinitely many congruence classes. This yields that no disjunctive language is regular.
For the definition and properties of disjunctive languages, one is referred to [1,5,11,13] or
[20]. To simplify the judgment of disjunctivity of a language immediately, Ries and Shyr
[11] indicate that every disjunctive language is dense. The characteristic of dense provides
the method to check whether a language is disjunctive. We firstly check whether a language
is dense because checking whether it is dense or not is much easier than checking whether
it is disjunctive. This study motivates the investigation of denseness property of a language.
There are some researches related to dense languages. The definition of dense is given in [7].
In [18] the authors consider the subset of X* named dense domain. One has the interesting
result that is a language is a dense domain if and only if it is dense. Some characterizations of
dense languages have been studied in [15]. Recently, the investigation concerning the classi-
fications of dense languages has been studied in [8]. More properties of dense languages can
be found in [14] or [16]. Furthermore, we study algebraic properties of autodense languages
and anti-autodense languages in this paper.

This paper is organized into several sections. The first section introduces the overview
of this paper. In the second section, we display some well-known definitions and properties
applied in this paper. Moreover, the definitions of autodense languages and anti-autodense
languages are given. The relationships of the families of languages concerning autodense
property are presented in the section. In the third section, we study some algebraic proper-
ties concerning autodense languages and pure autodense languages. There is a subset of an
autodense language that is not autodense. The union of autodense languages is autodense
and the finite union of pure autodense languages is pure autodense. It can be shown that the
family of all autodense languages is not closed under catenation. Moreover, we provide a
method to construct a union of infinitely many pure autodense languages which is dense.
In the meanwhile, a procedure is provided to construct a discrete autodense language con-
tained in a dense language. In the final section, some algebraic properties of anti-autodense
languages are studied. Union and catenation of two anti-autodense languages may not be
an anti-autodense language. However, the families of all anti-autodense prefix codes and all
anti-autodense suffix codes are closed under catenation. Moreover, we also investigate the
characterization of L, n > 2 which are anti-autodense languages.

2 Definitions and preliminaries

In this paper the alphabet X containing more than one letter is assumed. Let X* be the free
monoid generated by X. Every element of X* is a word and every subset of X* is a language.
Let 1 denote the empty word, and X T = X*\{1}. A language L C X* is dense if for any w €
X*, there exist x, y € X* such that xwy € L. That is, for every w € X*, X*wX* N L # (.
A set S € X* is called dense domain, if for any D C X*, the property “X*uX* N D # @,
for all u € S” implies that D is dense. A primitive word is a word which is not a power of
any other word. Let Q be the set of all primitive words over X. Every word u € X can be
expressed as a power of a primitive word in a unique way, that is, for any u € X+, u = f"
for a unique f € Q and n > 1. In this manner, f is the primitive root of # and denoted by
f = /u. For a language L, let /L = {\/u | u € L}. A language L is a global (coglobal)
language if /L = Q(+/L = Q\F, where F is a finite language). A forest language [2] is a
language L such that L = UfeA f+ for some A C Q.

Moreover, some classes of codes in this paper are defined as follows. A language L € X+
is called a code if x1x2...xp = y1y2...ypand x;,y; € Xforall 1<i <m,1 < j<n
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A note on autodense related languages 211

imply that m = n and x; = y; forall 1 < i < n. For any two words u,v € X*,
u <p v(u <5 v)if v = ux(v = xu) for some x € X*. Meanwhile, u <, v(u <5 v)
denotes that u <p v(u <s v) and u # v foru, v € X*. A language L C X is an infix code
ifforall x, y, u € X*, u, xuy € L togetherimply x = y = 1. Alanguage L C X is a prefix
code (suffix code) if LN LXT = @(L N XTL = ). Alanguage L C X7 is a bifix code if
it is both a prefix code and a suffix code. It follows immediately that an infix code is a bifix
code. A language L C XV is an intercode of index m if L" ' N XtL" Xt =@, form > 1.
The family of intercodes is an important subfamily of bifix codes [19]. A comma-free code
is an intercode of index 1. Some algebraic properties of intercodes and comma-free codes
can be found in [4] or [19].

Definition 2.1 Let L € XT'. A language L is autodense if for any w € L, there exist
x,y € X' such that xwy € L.

No infix code is an autodense language. Since a comma-free code is an infix code [4], a
comma-free code can never be an autodense language. Remark that every dense language
is autodense. Let £, be the family of all dense languages and let £, be the family of all
autodense languages over X. Therefore Ly C L.

Definition 2.2 A language is pure autodense if it is autodense but not dense.

An intercode of index 2 can be a pure autodense language. The well known context-free
language C = {a"Db"|n > 1} is an example of pure autodense language.

If the set L € X7 is not an autodense language, then there exists w € L such that
xwy ¢ L forall x,y € XT. Such a language is non-autodense. Moreover, we consider a
stronger version of this language which will cover all the infix codes and hence cover all of
comma-free codes. We have the definition of anti-autodense language as follow.

Definition 2.3 A language L is anti-autodense if LN X+ LX ™' = ). Moreover, if a language
L satisfies L N XTLXT = @, then we say that L satisfies anti-autodense condition.

Every infix code has such property. Since a comma-free code is an infix code, every
comma-free code is an anti-autodense language.

In the following, we will investigate some characterization between anti-autodense lan-
guage and another codes. Firstly, we study some examples as follow.

In Guo et al. [3], it was shown that a maximal prefix code L is a right semaphore code
if and only if L N XTLX™ = (. However, an anti-autodense language may not be a code.
For example, the language L = {ab, aba, bab} over X = {a, b} satisfies the anti-autodense
condition L N XTLX™ = @. But L is not a code because (ab)(ab)(ab) = (aba)(bab).

Recall that an infix code is a prefix code and also a suffix code. Every infix code satisfies
the anti-autodense condition. But a language satisfying the anti-autodense condition may not
be an infix code. For example, the language L = {ab, ba?, bazb} satisfies the condition
LNXTLX" = @, butit is neither a prefix code nor a suffix code. By this example, we point
out that there is a code L satisfying the condition L N XL X = ¢ but L is not a bifix code.

Let X = {a,b}and Ly = a*b, Ly = ab™, L3 = (ba™b\ {ba’b}) U {ab,ba*}, Ls =
abta U {a}. All Ly, Ly, L3 and Ly satisfy the condition L N XTLX" = @. Here, L, is
a prefix code but not a suffix code. Lj is a suffix code but not a prefix code. L3 and L4
are anti-autodense codes but neither prefix codes nor suffix codes. It is easy to construct an
anti-autodense language which is not a code. The language {a, az} is one. One of the same
kind of infinite language is {a, a*} U ab™.

Beside the definition of an anti-autodense language, we give the definitions of codes
related to anti-autodense. Let L € X+.
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212 C.-M. Fan et al.

Definition 2.4
(1) L is an anti-autodense prefix code if L is a prefix code, satisfying the condition L N
XTLXT =0.
(i1) L is an anti-autodense suffix code if L is a suffix code, satisfying the condition L N
XtLXT =0.

(iii) L is an anti-autodense bifix code if L is an anti-autodense prefix code and also an
anti-autodense suffix code.
(iv) L is an anti-autodense code if L is a code, satisfying the condition L N XTLX ' = @.

From the above definitions, these families of languages exist and all are different families
of languages. Let Luq, Laab, Laaps Laas and Laqc represent them, that is,

Laap : the family of all anti-autodense bifix codes over X.
Laap - the family of all anti-autodense prefix codes over X.
Laas : the family of all anti-autodense suffix codes over X.
Laqc - the family of all anti-autodense codes over X.

For convenience, the following notations are used.

Lgq : the family of all anti-autodense languages over X.
L, : the family of all prefix codes over X.

L : the family of all suffix codes over X.

L : the family of all bifix codes over X.

L; : the family of all infix codes over X.

Here £, is the family of all infix codes over X, thatis, Ly0p = L4 N Lp = L;. And
Laap = Laa N Lp; Laas = Laa N L. The relationships of the families of languages are
presented as follows. Laap C Laap C Laae C Laas Laab C Laas C Laae C Laa-

Furthermore, there are some results used in the rest of this paper as follow.

Lemma 2.1 ([18]) Q is a dense domain.

Lemma 2.2 ([18]) Let L C X . Then the following are equivalent

(i) L is dense.
(i) /L is dense.

(iii)) L is a dense domain.

From the previous lemma, we have that L is a dense language if and only if L is a dense
domain. From now on, we will speak about dense languages instead of dense domains.

Lemma 2.3 Let A, B C X*. Then AU B is dense if and only if either A or B is dense.

Proof Let A, B C X*.If A is dense, then clearly A U B is also dense, for any B. Conversely,
if neither A nor B is dense, then there exist #, v € X7 such that X*uX* N A = @ and
X*vX* N B = #. We have X*uvX*N A = @ and X*uvX* N B = @. This implies that
X*uvX* N (AU B) = ; hence A U B is not dense. O

Lemma 2.4 ([18]) Let L be a dense domain and let F be a finite subset of L. Then L\F is
a dense domain.

Lemma 2.5 Let L C X*. If L is dense, then L™ is dense.

Proof Let L C X* be a dense language. Note that if A is dense and A € B for some
A, B € X*, then B is dense. Since L C L, itis clear that L™ is dense. O

Lemma 2.6 ([19]) Let L € X*. If L is an intercode, then L C Q.
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A note on autodense related languages 213

3 The autodense languages

In this section, we study some algebraic properties of autodense languages. Beside the lan-
guage is autodense, we also study some languages which are pure autodense or which are
not pure autodense.

Lemma 3.1 Every autodense language is infinite.

Proof Suppose that L is a finite autodense language. Let u € L be one of the words with
maximal length in L. By the definition of the autodense language, there exist x,y € X™
such that xuy € L. This contradicts that u € L is one of the words with maximal length in
L. Thus an autodense language must be infinite. O

From the above lemma, we conclude that a subset of an autodense language may not be
an autodense language. Since the intersection of two languages can be finite, an intersection
of two autodense languages may not be autodense. Furthermore, the following example con-
firms us in our claim. For instance, an infinite subset of an autodense language may not be
autodense. Let L = a*ba?a*Ub*ab*. Then L is an autodense language because L is the union
of two autodense languages. The language L' = L \ X*ba’X+ = a*ba® U ba’a* U b*ab*
is an infinite subset of L. But L’ is not autodense for L' N X*ba?X+ = @. Beside the union
of autodense language is autodense, we prove that LT = L U L2U L3 U - - - is autodense in
the following proposition.

Proposition 3.1 For any nonempty language L C X, the language L™ is autodense.

Proof Letz € LY = LUL?UL3U--. . Thenz € L" for some r > 1. This implies that

P =zzz€ LY ¢ LT . Letx =y = z € X*+. It follows that xzy = z3 € L. Therefore,

L7 is autodense. ]
From Proposition 3.1, if L = {f}, f € X, then L™ = 7 is autodense.

Proposition 3.2 The following are true:

(1) Lau- Ly C Ly.
(1)) Lg-Lauw CLy.

Proof Both (i) and (ii) are immediate. ]

From Proposition 3.2, £; is anideal of £,,,. But £, is not closed under catenation. Indeed,
let Ly = {b'ab'li = 1} and L, = {a/ba’|j > 1}. Then L, L, are both autodense and
L\Ly = {b'ab'a’ba’ i, j > 1} is not autodense. It is obviously that (bab)(aba) € LiL;,
but X (bab)(aba)XT N L1Ly = .

Lemma 3.2 ([17]) Let L € X ™. If L contains a maximal code, then L is dense.
Corollary 3.1 Let L € X ™. If L contains a maximal code, then L is autodense.

Proof Since a dense language is an autodense language, by Lemma 3.2, the corollary is clear.
O

The converse of Corollary 3.1 is not true. For instance, let L be any dense code. If L is
not maximal, then let L = L. If L is maximal, then let L = L;\{w}, where w € L. This
in conjunction with Lemma 2.4 yields that L is a dense language. Moreover by Lemma 2.5,
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214 C.-M. Fan et al.

we have that the language L™ is dense. Therefore L™ is an autodense language, but L does
not contain a maximal code.

From the definition of pure autodense language, the pure autodense language is autodense.
This implies that the union of pure autodense languages is autodense. Furthermore, it can be
derived that the finite union of pure autodense languages is pure autodense.

Proposition 3.3 Lern > 1and L = |J]_, A;, where A; is a pure autodense language. Then
L is pure autodense.

Proof Letn > 1 and L = |J]_, A;, where A; is a pure autodense language. Then L is
autodense. Since a finite union of non-dense language is also not dense, this yields that L is
not dense; hence L is pure autodense. O

In the following propositions, we study some languages which are not pure autodense.
Recall that L is a global (coglobal) language if VL =0 WL = O\ F, where F is a finite
language.)

Proposition 3.4 Every coglobal language is dense and hence is not pure autodense.

Proof Let L € X be a coglobal language. Then there exists a finite language F C X™*
such that VL = O\ F. By Lemmata 2.1 and 2.2, Q is dense. These in conjunction with
Lemma 2.4 yield that /L is dense. By Lemma 2.2 again, L is dense and hence is not pure
autodense. O

Proposition 3.5 The complement of a pure autodense language in X* is dense and hence is
not pure autodense.

Proof Let L be a pure autodense language and let L = X*\L. From the definition of
autodense lzlnguage,_L is not dense. B_ecause L is not dense, there is w € X* such that
X*wX* C L. Then L is dense; hence L is not pure autodense. O

There are some examples of pure autodense languages in the following propositions. For
anywordw = ajay ...a,, wherea; € X, i = 1,2, ..., r, letthe mirror image of w be wk =
aray_1 ...axa,. For alanguage L, the mirror image of L is defined as LR = {w® | w € L}.
It is clear that (LR)R =L.

Proposition 3.6 Forany L C X, L is pure autodense if and only if its mirror image LX is
pure autodense.

Proof Since (LK) R _ L, we need only show the necessary condition. Assume that L is not
dense. Let w be a word such that xwy ¢ L forevery x, y € X*. Then yRw®x® ¢ L. Since
x,y € X* are arbitrary, hence LR is not dense. Moreover, if L is autodense, then clearly
LR is autodense. Therefore for a pure autodense language L, the mirror image L is a pure
autodense language. O

Let w € XT and A, be a pure autodense language containing the word w. Then X =
Uwex+ Aw is dense. Thus, an infinite union of pure autodense languages may be dense.
However, the pure autodense language | J;cy atbia™ is not dense because X*babZabX* N
Ujen a™b'a™ = @. From this observation, not all infinite unions of pure autodense lan-
guages are dense. We will provide a method to construct an infinite union of pure autodense
languages which is dense in the following proposition.
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A note on autodense related languages 215

Lemma 3.3 Every word u € X7 is contained in a pure autodense language f+ where

feo.

Proof Letu € X be a given word. To find that there exists a pure autodense language
L suchthatu € L, weletu = f* where f € Qandn > 1.If L = fT, thenu € L.
By the definition of autodense language, clearly L = f is an autodense language. Since
VL = {f}isnot dense, by Lemma 2.2, L is not dense. Therefore, the language f 7 is a pure
autodense language containing the word u. O

Proposition 3.7 For a finite subset A C Q, the forest language L = | J ren f T is a pure
autodense language.

Proof Clearly, this proof follows from Proposition 3.3 and Lemma 3.3. O

From the above proposition, the language | feo fT = X7 is dense where f is pure
autodense.

Corollary 3.2 Let L = |J;; Ai, where I is an index set, finite or infinite, and each A; be
a pure autodense language. Then the language L is an autodense language.

Proof This result is immediately. O

For a given language L C X*, the principal congruence Py determined by L is defined
as follows:

u=v(P) < (xuyel < xvyeL,Vx,yeX").

A language L € X* is discrete if for every two words x and y in L, Ig(x) # Ig(y). It implies
that there exists a unique word u € L N X™ for some m.

Proposition 3.8 Let L be a discrete autodense language. Then for any n > 1, there exists
an integer m > n such that at least two words u # v € X™ with the property u # v (Pr) .

Proof Assume that L is an autodense language. By Lemma 3.1, L is infinite. Then for any
n > 1, there exists an integer m > n such that [L N X™| # @. Since L is discrete, there
are two words u # v € X" such thatu € L and v ¢ L. By the assumption that L is an
autodense language, there exist x, y € X T such that xuy € L. Since L is discrete, it implies
that xvy ¢ L. Therefore u # v (Pr). O

In the following proposition, we provide a procedure to construct a discrete autodense lan-
guage contained in a dense language. For simplifying our procedure, we need the following
lemma.

Lemma 3.4 Let L C X*. The following are equivalent:

(i) Foreveryw € X*, X*wX*NL # (.
(i) Foreveryw € X, X*wX*NL # 0.
(iii) Foreveryw € X, XTwXTNL #£0.

Proof (i) = (ii) Immediate. (ii) = (i) Only to show that X*(1) X* N L # @ holds true, where
1 is the empty word. But this is always true, for X*()X*NL = X*X*NL =X*NL =L,
which is certainly not empty. (ii) = (iii) Suppose that (ii) holds. Let w € X and con-
sider the word zywzz, where z1,z2 € XT. By (ii) X*(zjwz2)X* N L # @. It is clear that
X+twX*T N L # @ and (iii) holds. (iii) = (ii) Immediate. ]
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Proposition 3.9 Every dense language contains a discrete autodense language.

Proof Let L be a dense language. We construct a discrete autodense language A contained
in L inductively in the following way. Start with a word, say, u; € L and put u; into A. Since
L is dense, by Lemma 3.4, there exist vy, vg € Xt such that up = vlulva € L. Note that
lg (u1) < Ig (uy) . Putthe word u; into A; hence u; is the second word in A. Now inductively,
suppose that the word u,, € A. There exist v,, v, € X such that u, 1 = vyuy, v/, € L. Then
naturally, put i, 41 = v,u,v), into A. Note that 1g (u1) < Ig (u2) < -+ < 1g (uy41) . Since
L is a dense language, this procedure can be infinitely continued without any problem. The
final set A is clearly a discrete autodense language contained in L. O

4 The anti-autodense languages

We study some algebraic properties of the families of languages related to anti-autodense
in this section. Firstly, we deal with the closure property of the union and catenation of two
languages on the families of languages L, Laab, Laap> Laas and Lagc.

(I) Union of two languages.

Union of two anti-autodense languages may not be an anti-autodense language. For exam-
ple, let a € X. The languages L1 = {a, az} and Ly, = {az, a3} are both in £,, while the
union L U Ly = {a, a2, a3} is not in L. Since £, and Ly are not closed under union,
both L4, and L, are not closed under union of two languages. Similarly, Ly and Lgac
are also not closed under union of two languages.

(II) Catenation of two languages.

It is known that £, Ly, and £, are closed under catenation. Moreover, <L, ->, <Ly, ->
and <Ly, -> are all free semigroups [9,20]. It is also known that £;, the family of all infix
codes, is closed under catenation. That is, £; is a semigroup. But <£;, -> is not free [6]. In
general, catenation of two anti-autodense languages is not an anti-autodense language. For
example, let a # b € X. The languages L| = {a, az} and Ly = {b, bz} are both in £,
while L1L, = {ab, ab?, a?b, a2b2} ¢ L44. Therefore L, is not closed under catenation. In
the following proposition, we will investigate the characterization concerning the catenation
of two anti-autodense languages.

Proposition 4.1 Let Ly, Ly be two anti-autodense languages. Then LiL, is an anti-
autodense language if and only if one of the following conditions holds:

(i) Ly is a suffix code.
(i) Ly is a prefix code.

Proof The necessary condition is clear. Now we prove the sufficient condition. Since both
Ly and L are anti-autodense languages, L1 N XTL 1 XT = @ and Lo, N XTL,XT = .
Suppose that (L1L2) N X' (L{Ly) X # . Then there exist uy, up € L1, vy, va € L; such
that ujv; = xupv,y for some x, y € X*. Since L| and L, are anti-autodense languages,
this yields that u; = xu; and vy = voy. From uy,uy € Ly and uy = xup, x € X*, L] is
not a suffix code, a contradiction. Similarly, from vy, vy € Ly and v; = vy, y € X T, Ly is
not a prefix code, a contradiction. O

Corollary 4.1 The families of languages Lyap and L, are both closed under catenation.
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A note on autodense related languages 217

Corollary 4.2 <L), -> is a subsemigroup of the free semigroup <Ly, -> and <Laqs, ->
is a subsemigroup of the free semigroup <L, ->.

However, neither <Lyqp, -> nor <Lyqq, -> are free semigroups. These results will be
derived in Proposition 4.2. In order to prove Proposition 4.2, the following notations and
Lemma 4.1, the well-known result given by Schiitzenberger [12], are needed. Let M be a
semigroup. For any two subsets A and B of M, we define

AT'B={xeM|AxNB £ ¢};
BAT'={x e M |xANB # ¢}.

Lemma 4.1 ([12]) Let S be a subsemigroup of a free semigroup M. Then S is free if and
onlyif ST'SNss~! c s.

Proposition 4.2 Neither the subsemigroup <Lgap, -> of the free semigroup <L, -> nor the
subsemigroup <Lgus, -> of the free semigroup <Ly, -> are free.

Proof Since the family of all prefix codes £, and the family of all suffix codes L;
are free semigroups, Lemma 4.1 is applicable. Firstly, we show that <L, -> is not
free. Let Ly = {ab,b}, L, = {b,aba}. Then L{L, = {ab2,ababa,b2,baba} and
Lol = {bab, aba®b, b?, abab}. Both L{L; and LyL; are in Ly4p. These in conjunc-
tion with Ly € Lyap yield that Ly € £}, Laap N LaapLyy,- But Ly = {b, aba} implies that
LyNXTLyXt # (.1t follows that Ly ¢ Laqp. Therefore, by Lemma 4.1, Ly is not free.
Next, <L4q45, -> is not free either, by symmetry. O

By Corollary 4.1, the families of languages L,qp and L4 are closed under catenation.
Moreover, the family of infix codes £; is a subfamily of L4, and Lyas, that is, £; C
Laap N Laas- It is known that an infix code can never be dense. We would like to generalize
this result in the following proposition.

Proposition 4.3 No anti-autodense language is dense.

Proof By Lemma 3.4, we have that a language L C X* is dense if for any w € X T, L N
X+twX™ # (. Thus if there exists a word w € X such that L N XTwX+ = @, then L is
not dense. Hence a language with the condition L N X LX ™' = @ certainly ensures that L is
not dense. Recall that a language with the condition L N X LX ™' = (4 is an anti-autodense
language. Thus the result is immediate. O

Corollary 4.3 Infix codes, anti-autodense prefix codes, anti-autodense suffix codes, and
anti-autodense codes are non-dense languages.

Proof The results follow directly from Proposition 4.3 and the facts, £; C Laap C Laae C
ﬁaav L:i C ﬁaas - caac C Acaa- ]

Corollary 4.4 The complement of an anti-autodense language is autodense.
Proof Let L C X7 be an anti-autodense language and let L = X*\ L be the complement of
l_,. By Proposition 4.3, L is not dense. Moreover, since X * is dense, by Lemmata 2.2 and 2.3,

L = X*\L is dense. Hence, the complement of an anti-autodense language is autodense.
O
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Remark Let X = {a,b} and let L € X be an anti-autodense language. If there exists a
word z € L = X+\L such that xzy € L for some x,y € X*, then |L N XtzX*| may
be infinite. For example, let L = ab™. It is clear that L N X*LX" = . Then L = ab™
is an anti-autodense language. It is also clear that z = b € XT\L, azb = abb € L, and
LNXThXt = L is infinite.

In the following propositions, we will study some anti-autodense properties of languages
L",n > 1. Let L € X7t be an anti-autodense language. Then it can be derived that
X+tL" X+ < XTLX* for every n > 3. This result can be found from the following
example. Let L = {a, ab}. Then L"~' = {a"~!, a"2ab, ..., (ab)"~'} . Hence the number
of a in every word in X T L"~! X+ is greater than n — 1. Thus b"ab" € XTLX T\ XTL"~1x+
for n > 3. This implies that Xt L"~1 X+ c X+t LX™.

Proposition 4.4 Let L € X be an anti-autodense language. Then L™ ¢ L for any n > 2.

Proof Let L € XV be an anti-autodense language. Then L N XTLX™" = . Suppose that
L" C Lforanyn > 2. Thisin conjunction with LNXTLXT = @yieldsthat L"NXTLXT =
@. Since XtL""1X* ¢ Xt LX" is true, this implies that L" N XTL" !X+ = (. Then L
is an intercode of index n — 1 with n > 2. But, by Lemma 2.6, any intercode contains only
primitive words, the condition L" C L is impossible. Therefore L” ¢ L foranyn >2. 0O

The converse of Proposition 4.4 is not true. For example, the language L = a* U bT
over X = {a, b} has the property L> ¢ L while L is an autodense language. An autodense
language may not have the above property. For example, a™ is an autodense language over
X = {a, b}. Here (a+)2 Cat.

For an anti-autodense language L, by Proposition 4.1, it is clear that L is an anti-auto-
dense language if and only if L is a prefix code or a suffix code. Now we extend this result
to L" forn > 3.

Proposition 4.5 Let L be an anti-autodense language. Then for n > 2, L" is an anti-auto-
dense language if and only if one of the following conditions hold: L is a prefix code or L is
a suffix code.

Proof Let L be an anti-autodense language. Then LNX+LX™T = (. Assume that L is a prefix
code or L is a suffix code. We want to show that L" N X TL" X = (J. We prove the result by
inductiononn > 2.Itisclear that L" is an anti-autodense language by Proposition 4.1. Recall
that <, ->, <Ly, -> are all free semigroups. By assumption, L", n > 2 is a prefix code or
a suffix code. Thus both L, L" are prefix codes or suffix codes. By Proposition 4.1 again,
L™t = L (L™) is an anti-autodense language. Hence by induction, L” is an anti-autodense
language. Now we assume that L" is an anti-autodense language. If L is neither a prefix
code nor a suffix code, then there exist u, v, w, z € L such that w = xu, z = vy for some
x,y € XT.Forn > 2, we consider wv" 2z € L". Then wv" ™2z = xuv”’zvy = xuv”’ly.
This implies that wv" 2z € XTL"X*. Thatis, L" N X*L"X* # . This contradicts that
L" is an anti-autodense language. Hence L is a prefix code or a suffix code. O

It is easy to split X+ into a disjoint union of two autodense languages. For example, let
X ={a, b}.
i) Xt=atU(Xt\a").
() Xt =aX*U bX*.
(i) XT = (atUbT)U(XT\ (aTUDLT)).

However, the same situation is not true for the case of anti-autodense languages.
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Proposition 4.6 Let X™ = L U Ly, U---U L,, where r > 2 and the union is a disjoint
union. It is impossible that all the L; are anti-autodense languages.

Proof This proof follows by induction from Lemmata 2.2 and 2.3, and Proposition 4.3. O

Remark Forany language L € X, itisimpossible thatboth L and X\ L are anti-autodense
languages.

Corollary 4.5 Let X™ = Ly ULy U---UL,, wherer > 2 and the union is a disjoint union.
Then at least one of the component L; in the decomposition is not an infix code.

Proof Since every infix code is an anti-autodense language, the corollary follows directly
from the above proposition. O

Corollary 4.5 tells us that X is not a finite disjoint union of infix codes. Moreover, there
are some other languages with this property. In fact, if L is not a finite disjoint union of infix
code, then for any infix code L; C L, the language L\L is also not a finite disjoint union
of infix codes.

Corollary 4.6 Let A be a finite disjoint union of infix codes and let L = X\ A. Then L is
not a finite disjoint union of infix codes.
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