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一一一一、、、、中文摘要中文摘要中文摘要中文摘要 

本研究探討具有柱狀延伸部之髖臼杯內襯之

磨耗形態與體積缺損量理論公式。首先，將不同

方向造成的磨耗型態予以分類，再推導各類別之

體積缺損量方程。藉由 SolidWorks®軟體以及文獻

上之公式驗證分析之正確性。結果顯示，包括正

向磨耗(90°)的特例在內，此類髖臼杯共有七種磨

耗型態。而且，為了避免人工股骨頭脫臼所給予

的髖臼杯杯口延伸部將產生可觀的磨耗碎粒，隨

著磨耗方向與延伸部高度的變化，在本文所探討

的例子中最高可達 21%。本研究的提出將有助於臨

床使用成效之正確評估以及人工髖關節組件的設

計分析。 

關鍵詞關鍵詞關鍵詞關鍵詞：磨耗磨耗磨耗磨耗、、、、髖臼杯髖臼杯髖臼杯髖臼杯、、、、內襯內襯內襯內襯、、、、聚乙烯聚乙烯聚乙烯聚乙烯  

 

Abstract 

This study analyzed the wear patterns of, and wear 

volume formulae for, cylindrically elongated 

acetabular cup liners. The geometric patterns of the 

wear surface were first classified, then wear volume 

formulae were derived by integral calculus. 

SolidWorks
®
 software or published formulae were 

used to verify the accuracy of the proposed formulae. 

The analytical results showed that the wear shape of 

the liner can be categorized into seven wear patterns, 

including the special case of wear at 90°, and the 

seven corresponding wear formulae were derived. In 

addition, wear of the cylindrical elongation might 

add considerably to the volume loss of the liner, 

depending on the height and shape of the elongation 

and the depth and direction of the linear penetration, 

being maximally 21% in the investigated model. The 

proposed wear formulae and patterns will be useful 

for more accurate performance evaluation of existing 

hip components implanted in patients and for the 

designing of new hip components.  

 

Keywords: Wear, Acetabular Cup, Liner, UHMWPE 

 

二二二二、、、、緣由與目的緣由與目的緣由與目的緣由與目的(Introduction) 

Tiny ultra-high molecular weight polyethylene 

(UHMWPE) debris generated by long-term friction 

between the artificial femoral head and the 

acetabular cup is known to reduce the longevity of 

total hip replacements [1-3].  

In the past, femoral head displacement has 

usually been regarded in terms of liner wear depth 

[4]. Many studies have analyzed 2D and 3D linear 

wear [5-8] and focused on the calculation of the 

acetabular cup volume loss [9-16]. Charnley [9] first 

stated that the wear volume could be calculated as 

the maximal cross-sectional area of the femoral head 

multiplied by the wear depth. However, Kabo [10] 

reported that the wear volume should not be based 

solely on wear depth, but also on the direction of 

femoral head movement. Nevertheless, some studies 

[13, 15] pointed out that the Kabo formula produced 

errors as high as 45%. Recently, Ilchmann et al. [16] 

compared several published formulae and proposed 

a new formula, which, however, has been found not 

to be sufficiently accurate [17]. The aim of this study 

was therefore to obtain a more accurate formula. 

Although acetabular cup liner loss is due to wear, 

creep, and/or the effects of the ageing of 

polyethylene [18-21], the present study did not 

attempt to distinguish between these different causes, 

but instead analyzed the shape of the bearing surface 

and the volume loss of worn regions at a given wear 

depth and direction. Once wear patterns are clearly 

clarified, related studies, such as gait simulation and 

stress analysis, can be more accurately performed. 

To be consistent with commonly used terminology, 

the volume calculated was the total volume loss, 

which is due to the effects of both wear and creep. 

 

三三三三、、、、材料與方法材料與方法材料與方法材料與方法(Materials and Methods) 

Figure 1 is a basic diagram showing the 

geometric structure of an acetabular cup liner and 

the trajectory of femoral head movement. The liner 

is formed from a hemispherical shell and a 

cylindrical elongation (Fig. 1a). The length of the 

elongation is denoted as D. The hemispherical shell 

and artificial femoral head (Fig. 1b) have the same 

radius, r. The trajectory of the femoral head that 

penetrates the PE liner is assumed to be translational 

motion [9], and the displacement of the center of the 

femoral head, oo′ , is given by the wear depth, w [4]. 

The dashed and solid lines in Fig. 1b denote the 

starting and final position of the femoral head, 

respectively, and the arrow shows the direction of 

femoral head penetration. The maximal circular 

section of the femoral head, which is perpendicular 

to the penetration direction, translates from dc to ab. 

Both da  and cb  are line segments. 

A. Observation and classification of wear 

patterns 
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Fig. 1 Basic diagram. (a) Structure of a cylindrically 

elongated liner. (b) Trajectory of femoral head movement. da  

and cb  are line segments. 

 

Figure 2 presents the wear models, constructed 

using SolidWorks® software, of a cylindrically 

elongated liner at various wear depths. The left 

panels show frontal views of the wear patterns. In 

each diagram, the two oblique lines represent the 
cylindrical wear trajectory, abcd (Fig. 1b), and the 

distance between the two oblique lines is the wear 

depth, w. The dashed circles show the differences in 
the wear patterns. When the wear depth is less than 

the length of the elongation (Fig. 2a), the wear area 

of the cylindrical elongation is bounded by a curved 
line and a line segment. The curved line is the 

intersection of the femoral head surface ab (Fig. 1b) 

and the cylindrical elongation, while the line 

segment is the intersection of the femoral head 

trajectory abcd (Fig. 1b) and the cylindrical 

elongation. When the wear depth is equal to (Fig. 

2b), or larger than (Fig. 2c), the length of the 
elongation, the wear area of the cylindrical 

elongation is bounded by a line segment. The right 

panels show 3D views of the wear models. 

 
(a) 

 
(b) 

 
(c) 

Fig. 2 Wear surfaces of an acetabular cup liner constructed using 
SolidWorks®. (a) to (c) Wear patterns (represented as dashed 

circles) as the wear depth increases. The diagrams on the left are 

frontal views and those on the right perspective views. 
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Fig. 3 Conceptual model for calculating the wear volume. 

 

 

B. Computation of the wear volume 

The liner volume loss associated with all wear 

patterns can be obtained by subtracting the dotted 

region and crossed region from the striped region by 
integration (Fig. 3). 

C. Validation I: SolidWorks® 3D wear models 

SolidWorks
®
 software was used to create models 

of the worn out regions of liners at various wear 

directions and depths [17]. 

D. Criteria for determining accuracy of formulae 

The wear volume,
WV , at any direction and any 

depth had to meet the criteria proposed in our 
previous paper [17]. 

 

四四四四、、、、結果結果結果結果(Results) 

For a cylindrically elongated liner with radius r 

and elongation length D, when the wear depth is w 

and the wear angle β , the wear pattern and 

corresponding wear formula are determined from the 

decision-making flowchart (Fig. 4). 

The wear formulae 
W,AV  to 

W,FV  and that of 

the special pattern of a wear angle of 90°, W,90V , 

please refer to our published paper [22]. 

 
 

 
 

Fig. 4 Decision-making flowchart for classifying wear patterns 

 



Figure 5 shows that the volumes of 60 worn out 

region models generated by SolidWorks® were 

close to the wear volumes calculated using the 

proposed formulae. The maximal difference was 
about 0.04% (wear angle 20° and wear depth 1mm). 

All the wear volumes calculated using the proposed 

formulae satisfied the criteria proposed in our 
previous paper [17]. 

Except where stated otherwise, the diameter of 

the liner was 32 mm and the length of the cylindrical 

elongation 4 mm. Figure 6 compares the results 

obtained using the proposed formulae with those 

obtained using published formulae for a wear depth 

of 5 mm. The curve developed by Ilchmann is 

closest to that obtained using the proposed formulae; 

however, when the wear angle was 40–90°, the wear 

volume exceeded the maximal value, 
maxV . For 

detailed comparisons and discussions, please refer to 

Wu [17]. 

Figure 7 shows the percentage difference 

between the results obtained using the Ilchmann 
formula and the proposed formulae. The values 

obtained using the Ilchmann formula exceeded those 

yielded by the proposed formulae; when the wear 
depth was 5.0 or 1.0 mm, the maximal difference 

was about 6% or 12%, respectively. 

Figure 8 plots the wear volume curves for liners 
with and without a cylindrical elongation (D = 4 mm 

vs. D = 0 mm) at a wear depth of 5 mm. The solid 

curve represents the wear volume of a hemispherical 

liner (without elongation) and the space between the 

solid curve and dashed curve represents the wear of 

the elongation. Figure 9 shows the wear of the 

cylindrical elongation expressed as a percentage of 

the total wear volume. When the wear angle was 

varied from 0° to 70°, this percentage declined in a 
near-linear fashion from about 21% to 0%. When the 

wear angle exceeded 70°, the cylindrical elongation 

remained almost intact and all of the wear was 
associated with the hemispherical shell. 
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Fig. 5 Comparison of wear volumes obtained using the proposed 
formulae and those obtained using SolidWorks® for a liner 

diameter of 32 mm. 
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Fig. 6 Comparison of values obtained using the proposed 

formulae with those given by published formulae at a liner 

diameter of 32 mm and wear depth of 5 mm. 
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Fig. 7 Compared to the values obtained in this study, wear 

volumes are overestimated using the Ilchmann formula 

(maximal difference of about 12%).  

0 20 40 60 8010 30 50 70 90

Wear angle β  (deg)

2000

2500

3000

3500

4000

2250

2750

3250

3750

4250

W
e

a
r 

v
o

lu
m

e
 (

m
m

3
)

Elongation D = 4.0

Elongation D = 0.0

W
ea

r o
f t

he 
cy

lin
dr

ic
al

 e
lo

nga
tio

n

Wear of the hemispherical shell

 

Fig. 8 Wear volume curves for liners with or without a 

cylindrical elongation at a wear depth of 5mm. The space 

between the solid line and dashed line represents the wear of 

the elongation. 
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Fig. 9 Wear of the cylindrical elongation as a percentage of the 

total wear volume at various wear depths. 

 

五五五五、、、、討論討論討論討論(Discussion) 

This study is a thorough theoretical reflection on 

all geometrical aspects of wear volume calculations 

for acetabular cup liners with (D > 0) or without (D 

= 0) an elongation. The derivations were based on 

the assumption that the trajectory of the femoral 

head that penetrates the liner is translational motion 
[9, 4]. To obtain accurate results for the performance 

of bearings using the presented formulae, it is 

assumed that the wear vector has been accurately 
measured, as in other studies [9, 11, 16, 17]. 

Many forms of liners, such as hard-on-hard 

bearings (metal-metal, ceramic-ceramic) or 

hard-on-soft bearings (metal-PE, ceramic-PE) are 

used in the clinic. For hard-on-hard bearings, several 

authors have discussed the effects on wear of 

impingement or microseparation during gait [23-27]. 

The limitations and benefits of contemporary 

combinations of hip bearings have been 

comprehensively illustrated by Clarke et al. [25]. 
Besong et al. [28] reported that microseparation 

significantly raises the contact stress, which 

becomes concentrated in the contact region of the 

superolateral rim of the cup, including the edge of 

the opening, and that microseparation will accelerate 

wear [24, 29]. However, Ingham et al. [3] deemed 

that the volumetric concentration of the particles is 

unlikely to achieve the threshold needed in vivo to 

induce osteolytic cytokine production. In general, for 
hard-hard bearings, the wear is extremely low and it 

is therefore almost impossible to measure the linear 

penetration and direction of wear on radiographs, 
and volume measurements can probably only be 

made from retrieved cups. However, when the 

volume of the retrieved liner cannot be accurately 
measured, for example, if there are adherent tissues 

or surgical scratches, numerical methods may be an 

alternative if the linear penetration can be accurately 

measured. Almost all hard-on-hard bearings are 

exactly hemispherical. In this case, the elongation 

length D in the presented formulae is set as 0.  
For hard-on-soft bearings, the boundaries of the 

PE liner on radiographs have normally been 

recognized and processed by image-processing 
technologies [5, 12, 30, 7, 8]. Several authors have 

adopted computer-assisted measurement systems or 

commercial software to assess 2D or 3D wear 

vectors from radiographs [31-34]. However, some 

factors, such as the radiolucence of the PE, the 

obliqueness, irregularity, or asymmetry of the edges 

of the PE, the rough surface of the cup, and the lack 

of sharpness and distortion in the X-ray image of the 

cup, influence the accurate evaluation of a wear 

vector, and multiple wear vectors have even been 
found in retrieved implants [35]. Other limitations 

are that the elongation might not be cylindrical, but 

conical or only partially cylindrical, and the exact 

shape or orientation of a partial elongation cannot be 

seen on radiographs. Though Sychterz et al. [32] 

pointed out that, for most patients, head penetration 

can be measured sufficiently accurately from the 

anteroposterior radiograph alone, Devane et al. [30] 

reported that interpretation of this femoral head 
penetration as true PE wear may be erroneous. 

Under these conditions, this study calculated the 

main wear volume generated by the linear 
penetration, which can be measured on radiographs. 

Furthermore, there is usually a clearance between 

the head and the cup, which may influence the 

estimation of theoretical wear volume. Derbyshire 

[13] found that, at small wear depths (<0.2 mm), 

neglecting a radial discrepancy between the 

components can result in an overestimation of wear 

volume in excess of 100%. However, in the clinic, if 

the linear penetration is very low, the worn PE 
particles are no problem. In contrast, if we want to 

calculate wear volumes at a significant linear wear 

[36], then this overestimation phenomenon decays 
rapidly with increasing wear depth [13]. For this 

reason, this study and other published studies [9, 10, 

12, 14, 16] did not consider the effect of clearance.  
Currently used cups are frequently strictly 

hemispherical and the edges in the entrance plane 

oblique to increase the range of motion. In this study, 

to simplify formula derivation and to understand the 

effect of the elongation on the amount of wear, a 

cylindrical elongation without a conical chamfer was 

considered. In this case, the wear of the cylindrical 

elongation as a percentage of the total wear was 

about 21% at a wear angle of 0° and decreased 

almost linearly to 0% at a wear angle of 70°. When 

the wear angle exceeded 70°, the cylindrical 

elongation remained almost intact. It must be noted 

that the wear of the cylindrical elongation depends 



on the height and shape of the elongation and the 

amount and direction of linear penetration. It may be 

further inferred that, when the edges in the entrance 

plane are oblique, as in currently used cups, the 
percentage of wear represented by wear of the 

elongation should be decreased. 

Derbyshire [13] published the theoretical 
determination of wear volume using numerical 

integration techniques, but no wear patterns or wear 

formulae were presented and the results were 

therefore hard to assess. Furthermore, the results 

were not validated. 

This study used the methods proposed in our 

previous paper [17] and verified that the proposed 

formulae and wear shapes are very accurate and 

reliable. The proposed formulae can be easily 

written as a computer program using Gaussian 
integration for clinical applications or implant 

designs. This work is the first to present all of the 

wear patterns and the wear volume formulae for 

acetabular cup liners with or without an elongation 

and provides a deeper understanding of the complex 

theory of wear volume calculation after total hip 

replacement. Bennett et al. [37] pointed out that 

pre-clinical laboratory wear testing of joint 

replacements is a vital evaluation tool for new 
implant materials and designs. Clarke et al. [25] also 

deemed that the role of laboratory studies is to 

isolate relevant aspects of performance by cup 
design. One alternative approach to experimental 

wear studies is computational modeling involving 

finite element analysis [38-40]. Recently, Matsoukas 

et al. [41] performed a mathematical optimization of 

implant components using a validated computational 

volumetric wear model as an objective function and 

concluded that the use of validated performance 

metrics as objective functions is possible in the 

optimization of total hip replacement prostheses.  
Any method for calculating the wear volume, 

including that used in our previous study [22] and 

here, is based on the assumption that the wear vector 
can be accurately measured. Although there might be 

some limitations in the accurate determination of the 

wear volume, the mathematic calculations using our 
method are correct and the proposed formulae have 

been shown to be the most accurate available. In this 

study, the wear surface of a cylindrically elongated 

liner was classified as one of seven wear patterns 

and the seven corresponding wear formulae were 

derived. 

We conclude that the use of a single formula to 

calculate the wear volume of an acetabular cup liner 

with a cylindrical elongation is not satisfactory. The 

proposed wear formulae and patterns will be useful 

in designing new hip components. Furthermore, an 

accurate calculation of the wear volume is also 

important in order to obtain a better understanding of 

loosening and osteolysis of cups made from 

conventional PE and probably those made from the 

modern highly crosslinked PE [42, 43, 3]. 
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