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中 文 摘 要 ： 為國內各醫學中心近年來加快裝設迴旋加速器，進行核醫製

藥，但是，由運轉中的加速器會有巨量高能γ-ray 射線自靶

區外釋。中子由 8O(p, n)18F 反應生成，造成迴旋加速器中

心的環境輻射，大幅增加，並衍生放射性核種，對大眾或工

作人員都具有直接或間接傷害。中山醫學大學附設醫院在配

合原廠(CTI 公司 RDS-111)不改變靶體、靶材

(polyethyleneketone, PEEK)、靶電流及照射時間情形下，

提高 18F-FDG 產率由 2005 年的 4200 GBq 提升至 2011 年 10

月的 35900 GBq，需要將反應器主體屛蔽改進，以符合游離

輻射防護法及正子放射同位素調製作業要點之要求，本研究

以佈植 TLD-600 及 TLD-700 來偵測/估算迴旋加速器中心之機

房、化學製藥室、辦公室之環境劑量，迴旋加速器中子偵測

及最小可測輻射值 Minimum detectable limit (MDL) 估算

雙 TLD 法，這可望推廣應用至各大醫學中心，而對日後加速

器現場，提出必要的輻射防護建議。 

中文關鍵詞： 醫用迴旋加速器、18F-FDG 產量、 二次中子劑量率(DR)、 

TLD-600、 L 型混凝土屏蔽 

英 文 摘 要 ： Of late, an increasing number of cyclotrons at 

medical centers in Taiwan have installed to produce 

nuclear medicine. However, as the operating cyclotron 

generates immense amounts of high energy neutrons 

from 18O(p, n)18F reactions, inducing gamma-ray which 

significantly magnifies high radiation from the 

cyclotron center, this intense radiation brings about 

health hazard to the medical personnel and the public 

whether through direct contact or indirect 

transmissions. In order to increase the yield of 18F-

FDG products from 4000 GBq (2005) to 251000 GBq 

(2010) without changing the target PEEK 

(polyethyleneketone), target current and irradiation 

time, Chung Shan University Hospital (CSMCH) has to 

redesign self-shield CTI RDS-111 so as to meet the 

Guild requirements regarding the production of 

positron emission tomography. The design of self-

shield CTI RDS-111 of Chung Shan Medical University 

Hospital (CSMCH) must have been developed to improve 

for meeting the Guild line of production of positron 

emission tomography. This two-year project is 

comprised of the first year scheme of calibrating and 

optimizing the conditions of TLD-600 and TLD-700, and 



the second year scheme of measurements taken at 

vault, hot laboratory and office of cyclotron center, 

evaluated neutron dose, and Minimum detectable limit 

(MDL) of pair-TLDs approach. The findings of this 

project can be adopted by medical centers to identify 

radioactive hot spots, developing precautionary 

measures for radiation protection. 

英文關鍵詞： Medical cyclotron, 18F-FDG yield, Secondary neutron 

dose rates (DR), TLD-600, L-shaped concrete shield 
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Abstract 
 

Of late, an increasing number of cyclotrons at 
medical centers in Taiwan have installed to produce 
nuclear medicine. However, as the operating 
cyclotron generates immense amounts of high 
energy neutrons from 18O(p, n)18F reactions, 
inducing gamma-ray which significantly magnifies 

high radiation from the cyclotron center, this intense 
radiation brings about health hazard to the medical 
personnel and the public whether through direct 
contact or indirect transmissions. In order to increase 
the yield of 18F-FDG products from 4000 GBq 
(2005) to 251000 GBq (2010) without changing the 
target PEEK (polyethyleneketone), target current 
and irradiation time, Chung Shan University 
Hospital (CSMCH) has to redesign self-shield CTI 
RDS-111 so as to meet the Guild requirements 
regarding the production of positron emission 
tomography. The design of self-shield CTI RDS-111 
of Chung Shan Medical University Hospital 
(CSMCH) must have been developed to improve for 
meeting the Guild line of production of positron 
emission tomography. This two-year project is 
comprised of the first year scheme of calibrating and 
optimizing the conditions of TLD-600 and TLD-700, 
and the second year scheme of measurements taken 
at vault, hot laboratory and office of cyclotron center, 
evaluated neutron dose, and Minimum detectable 
limit (MDL) of pair-TLDs approach. The findings of 
this project can be adopted by medical centers to 
identify radioactive hot spots, developing 
precautionary measures for radiation protection. 
 

Keywords: Medical cyclotron, 18F-FDG yield, 
Secondary neutron dose rates (DR), TLD-600, 
L-shaped concrete shield 
 
 
1. Introduction 
 
1.1. Medical cyclotron 

Rapid growth in the use of positron emission 
tomography (PET) as a clinical tool has led to a 



rapid increase in the number of cyclotrons 
worldwide that produce radiopharmaceuticals 
for PET (Lin et al., 2009; Lee and Chen, 2008; 
Herzog, 2007; Qaim, 2004). Unlike 
conventional cyclotrons used in physics 
research, medical cyclotrons are characterized 
by their compact size and operational ease in 
generating 18F (t1/2=109.4 min), 13N (t1/2=9.97 
min) and 15O (t1/2=2.04 min), which are 
commonly utilized in PET studies (Reina et al., 
2010; Herzog, 2007; Qaim, 2004). Chung Shan 
Medical University Hospital (CSMUH) is the 
only medical center in Taichung (that means 
central Taiwan) that produces these 
radiopharmaceuticals with short half-lives and is 
equipped with a self-shielded CTI (Knoxville, 
TN, USA) Radioisotope Delivery System 
(RDS-111) cyclotron (CTI, 1995). The RDS-111 
cyclotron, installed in the basement of the 
CSMUH, was fully operational in September 
1998. The cyclotron center shield was 
constructed based on the methodology and data 
provided in the National Council on Radiation 
Protection and Measurements (NCRP) 51 
(Comsan, 1996; NCRP 51, 1977).  

The room housing the RDS-111 cyclotron has 
0.7-m-thick concrete walls. The vault room is 
located to the right of a hot laboratory, which is 
located to the right of the maze path. The vault 
room measures 6.7×8.2×4 m3. The wall 
separating it from the hot laboratory is made of 
0.5-m-thick concrete. The concrete floor and 
ceiling are 1 m and 1.5 m thick, respectively. 
The RDS-111 cyclotron is surrounded by a 
self-shielded system, comprising two 
interlocking shielded blocks. This system has an 
inside layer larger that is 30 cm in thickness and 
an outside layer that is 70 cm in thickness. The 
self-shielded system is a mixture of 
polyethylene (PE), boron carbon (B4C), and 
concrete. The shield system is a primary 
radiation shield that surrounds the RDS-111 and 
has provided complete protection against 
radiation and has reduced the number of 
neutrons and �-activity to safe levels since 1998 
(Lin et al., 2009; Lee and Chen, 2008; CSMUH, 
2007; Comsan, 1996; ICRP 60, 1991). Figure 1 
plots the annual yields of 18F-FDG in GBq 
during 1999-2011. The PET cyclotron generates 
accelerated protons with beams as high as 80 
�A. 

 

 

 
 

Fig. 1. Annual production of 18F-FDG at the 
cyclotron center of the CSMUH 

 
In this study, a refined shielded design was 

generated by changing the slide door (d2) 
installed across the maze entrance and adding an 
L-shaped concrete shield to comply with the 
stringent dose limit of 100 mSv 5yr-1 for 
workers and 1 mSv yr-1 for the public set by 
International Commission on Radiological 
Protection (ICRP) and ROC-AEC (ROC-AEC, 
2005; ICRP 60, 1991). 
 
1.2. Redesigned RDS-111 

Instead of the 0.5m-thick concrete wall, 
which is an insufficient thickness, shielding was 
improved by adding an L-shape concrete shield. 
Figure 2b shows that shielding was improved by 
a biological Pb shield, measuring 120×120×3.2 
cm3, placed at location F in front of a 
maintenance table. One accesses the vault by 
moving along the maze path and then directly 
through two motor-driven sliding doors (i.e., d1 
and d2), which are made of 1-cm-thick Pb and 
5-cm-thick PE. 

 

 
 

Fig.2b. Refined shielded design and layout of 
the cyclotron center at CSMUH, showing the 
geometric correlations between the vault room, 
maze path, and hot laboratory. The L-shaped 



concrete shield, measuring 1.4×0.4×2.2 m3, was 
placed in 2005 next to the hot laboratory to 
reduce secondary neutrons and �-rays. 

Figure 2b shows the current layout of the 
cyclotron center. To improve the radiations of 
the cyclotron vault room, because the maze is 
too short, the most effective method is to 
suppress neutron DRs along the maze by 
installing a shielded sliding door (d2) across the 
maze entrance and an L-shaped concrete shield 
measuring 1.4×0.4×2.2 m3. However, the DRs 
from secondary neutrons remain the dominant 
radiation risk to the public, center staff, and 
maintenance workers (Lin et al., 2009; Lee and 
Chen, 2008). 

Early in 2003, our laboratory started 
monitoring secondary neutron DRs with the BF3 
neutron counting system near the cyclotron and 
linear accelerator (linac) at the CSMUH (Liu et 
al., 2010, Lin et al., 2009; Lee and Chen, 2008; 
Chen and Chung, 1997). Furthermore, gross 
counts recorded with the TLD provide more 
precise and accurate data for analytical 
processes than the high purity germanium 
detector, which performs an analysis partly 
based on a �-spectrum when assessing 
environmental radiation (Changlai et al., 2012; 
Lin et al., 2009; Lee and Chen, 2008; Katona et 
al., 2007). Precise measurement by the 
TLD-600 is critical when evaluating neutron 
DRs because the process for quantifying a small 
number of neutrons (~104 n cm-2 s-1) is difficult 
practically and the neutron distribution in the 
vault room fluctuates markedly (Lin et al., 
2009).  

 
1.3. Radiation weighting factor (WR) of neutron  

According to the (ICRP) 60, the radiation 
weighting factor (WR) for neutrons in the range 
of 5-20 MeV is quite high, likely generating a 
large effective dose to the public (ICRP 60, 
1991). Different techniques, such as TLD-600 
(Hsu et al., 2008), activation detectors (Liu et 
al., 2010; Lin et al., 2009), bubble dosimeters, 
Bonner sphere spectrometers and Monte Carlo 
simulation, have been employed to measure 
neutron DRs in mixed neutron �-radiation fields 
of medical cyclotrons. 
 
 
2. Method and materials 
 

2.1. Thermoluminescent dosimeters (the 
TLD-600) 

Because it indicates long-term dose 
accumulation, the TLD-600 has been used 
widely over the last 30 years to assess mixed 
neutron �-radiation fields for neutron DRs of 
cyclotrons and linacs (Hsu et al., 2008; 
Ranogajec-Komor et al., 2003). To compare the 
fluctuation of the TLD-600, two TLDs were 
combined in one bag, such that the 88 TLDs 
represented 44 measurement locations in the 
CSMUH and TLDs were detected as neutron 
DRs during a one-month survey. Additionally, 
five bags were utilized to measure the 
fluctuation of Harshaw 3500 readers in the lab, 
which has low background levels of radiations 
(Changlai et al., 2012). All measurements were 
conducted in triplicate and carried out with a 
batch of highly sensitive 3.2×3.2×0.89 mm3 
TLD-600 dosimeters. The TLD-600 is 
composed of 95.6% 6Li and 4.4% 7Li. The 
TLDs’ lithium isotopic concentrations provide a 
different response to neutrons, which is mainly 
associated with the 6Li(n,�)3H nuclear reaction 
(Hsu et al., 2008). Before irradiation, the 
TLD-600 was heated to 400°C for 1 h and 
200°C for 2 h in a furnace 47900 and then 
allowed to cool to ambient temperature before 
use. After the one-month survey, the TLDs were 
analyzed with a fully automated Harshaw 3500 
reader (Bicron NE Solon, OH, USA). The 
readout uses a two-step procedure: first, TLD is 
heated to 50°C for 1 s, and then heated to 300°C 
at a rate of 10 °C sec-1, and held at 300°C for 
another 1 s (Hsu et al., 2008; Ranogajec-Komor 
et al., 2003). The TLD-600s were then counted 
and analyzed to map the distributions of 
secondary neutron DRs in the vault room. 
 

2.2. Surveying neutron DRs in the cyclotron 
room 

For all locations where neutron DRs were 
measured, two TLD-600s were irradiated with 
the averaged signal. To map neutron DR 
distributions, the TLDs were suspended at a 
height of 1 m above floor to represent the 
neutron DR of a standing person (Changlai et al., 
2012; Lee and Chen, 2008). Other TLD-600s 
were suspended anywhere inside the cyclotron 
center during experiments. The TLD-600s 
randomly measured throughout the cyclotron 



center. The center of the RDS-111, location O (0, 
0), was defined as the geometric origin, and all 
dimensions are in meters (cf. Fig. 2b). Further, 
two pairs of TLD-600s were placed at locations 
D (0, -1.70) and E (0, -1.40) at a height of 1.80 
m inside and outside layer of the self-shielded 
system to evaluate the effectiveness in 
protecting against secondary neutrons. 
Measurements were made at 44 locations using 
reusable TLDs in two consecutive operating 
cycles per day during the one-month survey. 
The first cyclotron operation was run from 
02:30 to 04:40 AM in the NMD to yield 
18F-FDG for use by hospitals located in either 
northern or southern Taiwan. The cyclotron was 
then run a second time from 05:20 to 07:30 AM 
from Monday through Friday since 2005 to 
yield 18F-FDG products for use by other nearby 
hospitals. Notably, compared with the original 
design, operation time was increased 3.25 times 
that in 1998 for the same two operational cycles. 
All measurements were made using a 35-�A 
proton current. These neutron DRs were taken 
as a function of distance from the geometric 
origin of the vault room and were interpolated 
between measurement locations at each distance. 
When neutron DRs were measured at several 
locations the same distance from location O 
during triplicate measurements, averaged 
neutron DRs at that distance are used. 
 
 
3. Results and discussion  
 

3.1. TLD-600 calibration  

The relative sensitivity of these TLD-600s was 
determined as the element correction coefficient to 
correct variation in individual sensitivities (Hsu et 
al., 2008). The neutron DR calibration of TLDs in 
terms of exposure was performed using BNCT 
beams at NTHU (Hsu et al., 2008). Energy response 
was tested at 6 MV X-ray, and calibration of 
individual TLDs was performed with a sensitivity 
correction applied to each TLD at the CSMUH. The 
TLDs were arranged in methylacrylate boxes 10 cm 
in diameter. Each box contained 10 lines, and each 
line contained 9 TLD-600s arranged alternately. A 
pencil-shaped ionization chamber (Wellhofer IC-69; 
CT Probes Model 350407’, Nuclear Associates, 
Victoreen, Inc., New York) with a volume of 0.6 cm3 
was also used to determine X-ray exposure. The 
chamber was connected to a signal digitizing 
preamplifier via a 0.9-m low-noise cable. The 

system’s readout meter was an innovation therapy 
dosimeter exposure meter.  

 

3.2. Neutron DRs among the vault room  

Figures 3 plots the contour maps of neutron DRs. 
Two-dimensional distributions in the vault room can 
be mapped using colored profiles that reflect various 
neutron DRs. All measurement data were obtained at 
1 m above the floor, except for those at locations D 
and E, which were 1.8 m above the floor, and used 
to determine shielding efficiency of the self-shielded 
system. The red color in Fig. 3 indicates that neutron 
DRs exceeded 103 �Sv mo-1, and the other colored 
zones represent varying intensity of the smoothed 
neutron DRs in the vault room. Table 1 shows the 
neutron DR at detection locations for these TLDs. 
This finding is due to distributions of secondary 
neutrons generated from the 18O(p,n)18F target went 
through self-shielded blocks and through the 
L-shaped concrete shield (Lee and Chen, 2008; 
Herzog, 2007).  

 
Table 1 

Table 1 lists neutron DRs at the RDS-111 cyclotron 
center (�Sv mo-1) 
 

Location Neutron dose rate 
Controlled area  
A (-1, -0.65) a 12.5±0.68 
B (-3.8, -4.0) 2.17±0.15 
C (-2.0, -2.8) 11.9±0.3 
D (0, -1.70) a,b 90.6±11.3 
E (0, -1.79) b 8.01±0.96 
F (-1.9, 1.25) 42.3±5.2 
G (-2.0, 1.45) 13.6±1.6 
H (-3.0, 3.60) 4.14±0.56 
d1 2.17±0.54 
d2 0.61±0.18 
Public area  
I (Hot lab) 0.43±0.14 
J (QC lab) 0.53±0.17 
L (Chem room) 0.49±0.16 
K (Office) 0.58±0.17 
M (Supplies room) 0.62±0.22 
P (Above O) 0.51±0.16 
Q (Below O) 0.63±0.21 
W (Waiting room) 0.48±0.15 

aunit: mSv mo-1  
bmeasured at 1.80 meters high for evaluating 
self-shielded  efficiency 
  

 
 
 
 



 

 
Fig. 3. Neutron DRs (�Sv mo-1) inside the 
RDS-111 vault room. 

 
 
Figure 2b shows the hot spots that are closest 

to medical personnel working in the hot 
laboratory. One can reasonably assume that 
leaking neutrons can penetrate far through the 
50-cm-thick concrete wall and maze, and then 
disperse into the cyclotron center. Over a total 
three-month survey, neutron DR at location W 
(waiting room) closed to Varian 2100 linac of 
the CSMUH was 0.48±0.15 �Sv mo-1. This 
value roughly equals 0.67±0.04 nSv h-1 and 
0.66±0.04 nSv h-1 measured in Taichung (Lee 
and Chen, 2008; Chen and Chung, 1997), 
indicating that NO significant amounts of 
neutrons existed in the public area, office (K), 
and hot laboratory (I), which is just opposing 
the RDS-111 target, the quality control 
laboratory (J) in the controlled area, and the 
office (K). In the public area, NO significant 
differences in neutron DRs existed among these 
locations. Furthermore, on the upper floor just 
above location O (P), and on the lower floor just 
below location O (Q), neutron DR was 
0.51±0.16 and 0.63±0.21 �Sv mo-1, respectively. 
These values during cyclotron operation are far 
below the limits recommended in the ICRP 60 
(ICRP 60, 1991). 
 
Conclusions 
  A newly designed vault room, comprising the 
L-shaped concrete shield and the added d2 door 
reduced possible neutron DRs and �-ray 
radiation in the cyclotron center at a medical 
university. Thus, the L-shaped concrete shield 
and the d2 door suppresses neutron DRs, which 
meet PET requirements, and increased 18F-FDG 
products by 11.5 times that in 2005. Those 
shield and door effectively reduced the neutron 

DR by a factor of 55500, and the effectiveness 
of the self-shielded system was 11300. These 
analytical results demonstrate that the 
self-shielded system and L-shaped concrete 
shield can protect the public from radiation 
exposure. Data in this work reveal that NO 
significant amounts of neutrons were detected in 
the public area. The annual “extra” neutron DR 
is far less than 50 mSv 5yr-1 for workers and 1 
mSv yr-1 for the public during a one-year 
operational period, far below the levels 
recommended by the ICRP 60. The TLD-600 
was a useful and reliable tool for evaluating 
DRs resulting from secondary neutrons in the 
cyclotron center. 
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