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中 文 摘 要 ： 麩胺酸神經系統過度活化會造成興奮性毒性並且參與巴金森

氏症之神經退化， 

麩胺酸代謝性受體第五亞型（mGluR5）可以調節麩胺酸之神

經訊遞功能，因此被認為可能是開發神經保護藥物之作用標

的。本研究之目的在於測量 mGluR5 拮抗劑 2-methyl-6-

(phenylethylnyl)-pyridine （MPEP）對於 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine (MPTP)所誘發之巴金

森氏症大鼠之神經退化、工作記憶及物件辨識缺損之效果。

本實驗使用 Wistar 大鼠為實驗動物，將 MPTP 微量注射到大

鼠之中腦黑質體緻密區（substantia nigra pars 

compacta），以誘發巴金森氏症動物模式，隔天起，動物每

天接受腹腔注射 MPEP（2 mg/kg/day, i.p.），連續投藥 14

天。第 8-10 天進行 T-型迷宮試驗以測量工作記憶，第 12-14

天測量物件辨識功能。MPTP 誘發之巴金森氏症動物出現工作

記憶缺陷及物件辨識功能缺陷，MPEP 治療可以改善上述兩項

行為缺陷，而且，巴金森氏症動物之黑質紋狀體會出現多巴

胺神經系統退化，黑質體緻密區內之微膠細胞活

（microglia）化增加，海馬迴 CA1 區域出現神經缺損，但是

MPEP 治療可以抑制這些神經組織學上所見之異常。上述結果

顯示 mGluR5 在巴金森氏症之生理病理機轉扮演一定之角色，

而且 MPEP 可能具有治療巴金森氏症失智之潛力。  

 

中文關鍵詞： 巴金森氏症、失智症、代謝性麩胺酸受體、認知功能 

英 文 摘 要 ： Hyperactivity of the glutamatergic system is involved 

in excitotoxicity and neurodegeneration in 

Parkinson＇s disease (PD). Metabotropic glutamate 

receptor subtype 5 (mGluR5) modulates glutamatergic 

transmission and thus has been proposed as a 

potential target for neuroprotective drugs. The aim 

of this study was to determine the effects of 2-

methyl-6-(phenylethylnyl)-pyridine (MPEP), an mGluR5 

antagonist, on working memory, object recognition, 

and neurodegeneration in a 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP)-induced PD rat model. Male 

Wistar rats were stereotaxically injected with MPTP 

into the substantia nigra pars compacta (SNc). 

Starting 1 day after lesioning (day 1), the rats were 

treated daily with MPEP (2 mg/kg/day, i.p.) for 14 

days and rats underwent a T-maze test on days 8-10 

and an object recognition test on days 12-14. MPTP-



lesioned rats showed impairments of working memory in 

the T-maze test and of recognition function in the 

object recognition test and both effects were 

prevented by MPEP treatment. Furthermore, MPTP 

lesion-induced dopaminergic degeneration in the 

nigrostriatal system, microglial activation in the 

SNc, and cell loss in the hippocampal CA1 area were 

all inhibited by MPEP treatment. These data provide 

support for a role of mGluR5s in the pathophysiology 

of PD and suggest that MPEP is a promising 

pharmacological tool for the development of new 

treatments for dementia associated with PD. 

英文關鍵詞： Parkinson＇s disease, dementia, metabotropic 

glutamate receptor, MPEP, cognition 
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Abstract   

Hyperactivity of the glutamatergic system is involved in excitotoxicity and 
neurodegeneration in Parkinson’s disease (PD). Metabotropic glutamate receptor subtype 5 
(mGluR5) modulates glutamatergic transmission and thus has been proposed as a potential 
target for neuroprotective drugs. The aim of this study was to determine the effects of 
2-methyl-6-(phenylethylnyl)-pyridine (MPEP), an mGluR5 antagonist, on working memory, 
object recognition, and neurodegeneration in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP)-induced PD rat model. Male Wistar rats were stereotaxically injected with MPTP 
into the substantia nigra pars compacta (SNc). Starting 1 day after lesioning (day 1), the rats 
were treated daily with MPEP (2 mg/kg/day, i.p.) for 14 days and rats underwent a T-maze 
test on days 8-10 and an object recognition test on days 12-14. MPTP-lesioned rats showed 
impairments of working memory in the T-maze test and of recognition function in the object 
recognition test and both effects were prevented by MPEP treatment. Furthermore, MPTP 
lesion-induced dopaminergic degeneration in the nigrostriatal system, microglial activation in 
the SNc, and cell loss in the hippocampal CA1 area were all inhibited by MPEP treatment. 
These data provide support for a role of mGluR5s in the pathophysiology of PD and suggest 
that MPEP is a promising pharmacological tool for the development of new treatments for 
dementia associated with PD.   

Keywords: Parkinson’s disease, dementia, metabotropic glutamate receptor, MPEP, 

cognition   
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1. Introduction   

In addition to motor dysfunction, dementia is seen in 25-30% of patients with 

Parkinson’s disease (PD) and is called PD dementia (PDD) (Aarsland et al., 2001; Brown and 

Marsden, 1984), the main symptoms being deficits in working memory and object 

discrimination (Barnes et al., 2003; Laatu et al., 2004; Ramirez-Ruiz et al., 2006). However, 

the development of drug therapy for PDD has been hampered because the pathophysiology is 

not yet fully understood. 

The progressive degeneration of dopaminergic (DAergic) neurons in the substantia nigra 

pars compacta (SNc) in PD triggers a cascade of functional modifications in basal ganglia 

circuitry that underlie the motor symptoms. According to the current model of basal ganglia 

circuitry, the loss of DAergic neurons leads to hyperactivation of the glutamatergic system in 

the subthalamic nucleus (STN) (Blandini et al., 2000), which provides an excitatory drive 

onto the SNc (Smith et al., 1996) and the output nuclei of the basal ganglia (Marino et al., 

2003), causing a vicious positive feedback loop, i.e., SNc neuronal loss causes STN 

hyperactivity, which, in turn, causes SNc neuronal loss, thus contributing to the inexorable 

progression of the neurodegeneration associated with PD (Blandini and Greenamyre, 1998; 

Marino et al., 2003). Thus, pharmacological blockade of glutamatergic transmission is an 

effective treatment for PD (Armentero et al., 2006).   

Hyperactivity of the glutamatergic system, seen as increased glutamate efflux in the 

brain, has been observed after nigrostriatal lesioning (Meshul et al., 1999; Robinson et al., 

2003). Excessive release of glutamate is an excitotoxic event and is involved in the 

degeneration of DAergic neurons in PD (Albin and Greenamyre, 1992). Blockade of 

metabotropic glutamate receptors (mGluRs) is a way of reducing glutamatergic hyperactivity 

and mGluRs are therefore potential targets for neuroprotective drugs, because they modulate 

glutamatergic transmission and are implicated in the processes of neurodegeneration and 

neuroprotection (Bruno et al., 2001). The mGluR5 subtype is abundantly expressed in 

different brain regions, such as hippocampus, frontal cortex, striatum (Pellegrino et al., 2007; 

Zhu et al., 2007), and basal ganglia structures, particularly the STN (Testa et al., 1994), and 

has been proposed as a target for the pharmacological treatment of PD (Rouse et al., 2000).   
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 Acute pretreatment with the mGluR5 antagonist 2-methyl-6-(phenylethylnyl)-pyridine 

(MPEP) results in neuroprotection of the nigrostriatal DAergic system in the 

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse PD model (Aguirre et 

al., 2005; Battaglia et al., 2004). Furthermore, 3 weeks of treatment with MPEP alleviates 

motor deficits in the 6-hydroxydopamine (6-OHDA)-induced PD rat model (Breysse et al., 

2003). Since MPTP-lesioned rats exhibit not only neurodegeneration and motor symptoms, 

but also cognition deficits (Ho et al., 2011; Wang et al., 2010; Wang et al., 2009), it was 

therefore of interest to examine whether MPEP could alleviate cognition deficits in the 

animals. The aim of this study was to determine the neuronal and behavioral effects of 2 

weeks of MPEP treatment in the MPTP-induced PD rat model.  

 

2. Materials and methods   

2.1. Animals  

Male Wistar rats (419.5±7.5 g; National Laboratory Animal Center, ROC) were housed 

in groups of four in acrylic cages (35×56×19 cm) in an animal room on a 12 h light-dark cycle 

(lights on at 07:00 h) with food and water available ad libitum. Each animal was handled for 5 

min/day on 3 consecutive days, starting one day after arrival. All experimental procedures 

were performed according to the NIH Guide for the Care and Use of Laboratory Animals and 

were approved by the Animal Care Committee of Chung Shan Medical University (IACUC 

approval No. 1001). 

2.2. General procedure 

All animals underwent stereotaxic surgery and bilateral infusion into the SNc of 

MPTP-HCl (1 μmol in 2 μl of saline; Sigma, MO, USA) or vehicle on day 0 (see Surgery 

section below), as described in our previous reports (Ho et al., 2011; Sy et al., 2010; Wang et 

al., 2010; Wang et al., 2009). Starting on the day after surgery (day 1), the rats received 14 

daily intraperitoneal (i.p.) injections of MPEP (2 mg/kg/day; Sigma, USA) [group name: 

MPTP+MPEP; n=13] or saline [group name: MPTP+saline; n=14] in a volume of 1 ml/kg at 

15:00 h. This dosage was chosen because of a previous report that chronic treatment with 

MPEP at doses of 1.5 and 3 mg/kg/day for 21 days improves motor deficits in the 
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6-OHDA-induced PD rat model (Breysse et al., 2003). The rats were subjected to a battery of 

behavioral tests performed as in our previous studies (Ho et al., 2011; Sy et al., 2010; Wang et 

al., 2009): a bar test was performed on days 1 and 7, a T-maze test on days 8-10, and an 

object recognition test on days 12-14. All behavioral tests were started at least 2 h after the 

beginning of the light phase (7:00 h) and were performed in a dim observation room (28 lux 

red light) with sound isolation reinforced by a masking white noise of 70 db. The test 

equipment and objects used in this study were cleaned using 20% ethanol and thoroughly 

dried before each test trial. On day 15 after MPTP lesioning, the rats were euthanized by 

exposure to CO2, transcardially perfused with phosphate-buffered saline, and the brain 

immediately removed for histological examination.  

2.3. Surgery 

Brain surgery was performed as described in our previous reports (Ho et al., 2011; Sy et 

al., 2010; Wang et al., 2010; Wang et al., 2009). Briefly, the rats were anesthetized using 

Zoletil (20 mg/kg, i.p.; Virbac, Carros, France), then MPTP-HCl (1 μmol in 2 μl of saline) 

was bilaterally infused into the SNc using the following coordinates adapted from the rat 

brain atlas (Paxinos G, 1986): AP: -5.0 mm, ML: ±2.0 mm, DV: -7.7 mm from the bregma, 

midline, and skull surface, respectively. Controls were subjected to the same procedure, but 

were infused with 2 μl of saline instead of MPTP [group name: sham+saline; n=12]. 

Immediately after surgery, the rats were injected intramuscularly with penicillin-G procaine 

(0.2 ml, 20,000 IU), then housed individually in plastic cages (25 cm × 41 cm × 19 cm) for a 

week before they were returned to their initial home cages (rats from the same home cage 

underwent the same treatment). During the first 5 post-operative days, 10% sucrose solution 

was provided ad libitum to prevent weight loss after surgery and reduce mortality (Da Cunha 

et al., 2001; Ferro et al., 2005).   

2.4. Behavioral tests 

Bar test: The bar test was performed on days 1 and 7 after MPTP lesioning. Catalepsy 

was evaluated by measuring the mean time (crossing latency) taken for a rat to climb over a 9 

cm high bar  after being laid across it with its hind limbs on the floor (Sy et al., 2010). Each 

animal was tested in 3 consecutive trials on each trial day.  



 6

T-maze test: The construction of the T-maze and the test procedures were identical to 

those described in our previous study (Ho et al., 2011). Briefly, in the training session 

performed on 2 consecutive days (days 8 and 9), the rats learned to find food rewards 

(chocolate pellets; Kellogg’s, Taiwan) in the T-maze using their working memory. On day 10, 

the percentage of correct responses in a test session was recorded. A training session 

consisted of 9 trials, each composed of two parts, a forced run and a choice run. In the forced 

run, one of the arms (left or right according to a random order) was closed by a sliding door 

and the reward was located at the end of the open arm. In the choice run that was carried out 

30 sec after the forced run, both arms were open and the correct response for obtaining a 

reward was to choose the newly opened arm, the opposite to that used in the forced run. On 

the following test day, 3 forced-choice-choice run trials were carried out, in which the rats 

made 2 choices following a single forced run and correct responses in the 6 choice runs were 

recorded. On the day before T-maze training, the rats were partially food restricted, the diet 

only being provided for 1 h, while, on the 2 training days, the diet was provided for only 1 h 

after the behavioral observation on that day. On the test day, food was not provided before 

testing, but was freely available afterwards. 

Object recognition test: The apparatus, an open box (60×60×60 cm), and the test 

procedure for the object recognition test were identical to those in our previous reports (Ho et 

al., 2011; Sy et al., 2010; Wang et al., 2009). Each rat was subjected to 3 exposure sessions at 

24 h intervals (days 12-14), then, 5 min after the last exposure session, a test session was 

performed (day 14). Four different objects that were unfamiliar to the rats before the 

experiment were used for each rat. Three of the objects (“A”, “B”, and “C”) were fixed to the 

floor 27 cm from three corners of the arena. Starting on day 12 after MPTP lesioning, the rat 

was allowed to explore the objects in the open box for 5 min on 3 consecutive days, then, 5 

min after the last exposure session, object “B” was replaced by a novel object, “D”, and the 

animal was returned to the open box for a 5 min test session. The time spent exploring the 

objects during the exposure sessions and test session was recorded. Exploration of an object 

was defined as the rat approaching it and making physical contact with it with its snout and/or 

forepaws. The percentage of the exploration time spent on object B or D in the sessions 

[(Time B or D / Time all objects) × 100%] was calculated. The difference in the percentage of time 

spent exploring object “B” in exposure 3 and the novel object “D” served as a measure of 

recognition memory for the familiar object. In addition, rearing number in the test was also 

recorded. A rearing was recorded when the rat stood on its hind legs, raised both forepaws off 
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the ground, and stretched its back and was considered to end when at least one forepaw had 

reached the floor again.  

2.5. Histological assessment and image analysis 

For histological assessment, on the day 15, 4 or 5 randomly selected rats per group were 

perfused intracardially with 4% paraformaldehyde in phosphate-buffered saline, then the 

brains were rapidly removed and post-fixed in 30% sucrose solution containing 4% 

paraformaldehyde at 4°C until use. To detect DAergic degeneration and microglial activation, 

frozen coronal brain sections (30 μm) were cut and immunostained at 4°C overnight with 

mouse monoclonal antibodies against rat tyrosine hydroxylase (TH) (1:2000; Zymade, USA) 

or rat MHC class II (OX-6; 1:200; BD Biosciences Pharmingen, CA, USA), as in our 

previous reports (Ho et al., 2011; Sy et al., 2010; Wang et al., 2010; Wang et al., 2009). In 

sections containing the hippocampus, Nissl staining was used to identify neurons. 

The stained brain sections were used to measure histological changes as described 

previously (Ho et al., 2011; Wang et al., 2010; Wang et al., 2009) using a microscope (ZEISS 

AXioskop2, Germany) coupled to a CCD (Optronics, USA) and Image Pro Plus Software 6.0 

(Media Cybernetics, CA, USA). In this study, we created three square areas of interest, one of 

32,037 μm2 in the striatum to determine the optical density of TH immunoreactivity and one 

of 2,817,932 μm2 in the SNc and another of 147,410 μm2 in the hippocampal CA1 area to 

determine neuronal density in these regions. In the striatum, we measured the intensity of 

DAergic projections by converting the TH-stained images to gray-scale, then measuring the 

gray level of the given area of interest and subtracting the background staining, measured in 

the non-immunoreactive corpus callosum; thus, the relative optical density was restricted to 

the values generated by the TH-reactive tissue. In the SNc, we measured the density of 

DAergic neurons and activated microglia by capturing images, overlaying an area of interest 

in this region, and counting the somas of TH-immunoreactive neurons and activated microglia 

in these areas. In the hippocampal CA1 area, as the neurons were tightly packed, it was 

difficult to directly count the number of pyramidal neurons from a 30 μm thick brain section, 

so we measured the density of pyramidal neurons by estimating neuronal density using a 

semi-quantitative method involving calculating the percentage of an area of interest in the 

CA1 area occupied by Nissl-stained neurons. Although a stereological approach involving the 

counting of cells in a complete series of sections would provide additional data (Ferro et al., 
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2005), calculating the cell number in representative brain sections yielded similar histological 

results to those reported in the literature (Da Cunha et al., 2001). All the thickness of the brain 

sections, location of immunostained area, and total number of cells in this area affect the 

levels of immunoreactivity (Xavier et al., 2005), which could influence the accuracy of image 

analysis of densitometry. For avoiding inconsistency happen between the brain sections of 

different groups, in the current study the representative brain sections were taken according to 

and the location of areas used for measuring neuronal density were based on the atlas of rat 

brain (Paxinos and Watson, 1986), and, in addition, immunohistological reactions of these 

sections were performed at the same time.   

2.6. Data analysis 

Analysis of variance (ANOVA), followed by the least-significant difference (LSD) post 

hoc test, was used to analyze the bar test and T-maze test results and the paired-samples t-test 

was used to analyze the object recognition test data. All results are expressed as the 

mean±SEM. The level of significance was defined as P<0.05 (two-tailed).  

 

3. Results   

ANOVA revealed that, on day 1 after surgery, the crossing latency in the bar test was 

different between the groups (F(2,24)=5.82, P<0.01). The LSD post hoc test showed that the 

crossing latency was significantly longer in rats that had undergone MPTP lesioning (groups 

MPTP+saline and MPTP+MPEP) than in the sham+saline group (both P values<0.01), 

indicating that MPTP lesioning induced motor impairment in the PD model. However, on day 

7 after surgery, no significant difference was observed between the groups, indicating 

spontaneous recovery of motor function, as in our previous reports (Ho et al., 2011; Sy et al., 

2010; Wang et al., 2010; Wang et al., 2009) (Fig. 1).  

ANOVA indicated that there were differences in the percentage of correct responses in 

the T-maze test between the groups (F(2,38)=9.55, P<0.001). The LSD post hoc test showed 

that MPTP lesioning significantly decreased the percentage of correct responses in the 

T-maze test compared to the sham-operated group (P<0.001), indicating a deficit of working 

memory. There was no significant difference in the percentage of correct responses between 
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the rats in the sham-operated group and those receiving MPEP treatment after MPTP 

lesioning (Fig. 2).   

The procedure used in the object recognition test is shown in Fig. 3A. ANOVA revealed 

that there were no significant differences between the groups in total exploration time and the 

percentage of time spent exploring object “B” in the 3 exposure sessions (data not shown). As 

shown in Fig. 3B, analysis using the paired-samples t-test showed that the sham+saline group 

(df=11, t=4.26, P=0.001) and the MPTP+MPEP group (df=12, t=3.40, P=0.005) spent a 

higher percentage of time exploring object “D” than exploring object “B”, whereas the 

MPTP+saline group did not. In terms of rearing number in the object recognition test, 

ANOVA with repeated measures revealed no significant treatment effect, time effect, or 

time-by-treatment interaction (Fig. 3C).    

Representative photomicrographs of immunostained and Nissl-stained brain section are 

shown in Figs. 4-7. TH immunoreactivity was observed in the cell bodies of DAergic neurons 

in the SNc (Fig. 4) and in DAergic processes in the striatum (Fig. 5). ANOVA showed that 

rats in the MPTP+saline group exhibited a decreased density of DAergic neurons in the SNc 

(F(2,12)=17.73, P<0.001) (Figs. 4B and E) and a lower relative optical density of TH 

immunoreactivity in the striatum (F(2,12)=43.26, P<0.001) (Figs. 5B and E) than the 

sham+saline group. MPEP treatment prevented the MPTP-induced decrease in the density of 

DAergic neurons in the SNc (Figs. 4C and E) and inhibited the MPTP-induced decrease in 

TH immunoreactivity in the striatum (Figs. 5C and E). Activated microglia, indicated by 

accumulation of OX-6-positive cells, were detected in the SNc in the MPTP+saline group 

(Fig. 6B), but not in the sham+saline group or the MPTP+MPEP group (Figs. 6A and C). 

ANOVA showed that the density of activated microglia in the MPTP+saline group was higher 

than that in the sham+saline group (F(2,11)=173.26, P<0.001) and that MPEP treatment 

prevented MPTP-induced microglial activation (Fig. 6E). In addition, the neuronal density in 

the pyramidal cell layer in the hippocampal CA1 area was decreased in the MPTP+saline 

group compared to the sham-operated group (F(2,11)=12.31, P=0.003) and this effect was 

inhibited in the MPTP+MPEP group.   

 

4. Discussion   
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In the present study, MPTP lesioning caused behavioral deficits in working memory and 

object recognition. A two week period of treatment with MPEP, an mGluR5 antagonist, at the 

daily dosage of 2 mg/kg/day prevented the above behavioral deficits. MPTP lesioning also 

decreased the density of DAergic neurons in the SNc and of pyramidal neurons in the 

hippocampal CA1 area and induced microglia activation in the SNc. The above 

neurohistological and neuroinflammatory changes were inhibited by MPEP treatment. To our 

knowledge, this is the first evidence that MPEP can prevent hippocampal cell loss in a PD rat 

model. Moreover, consistent with our previous reports (Ho et al., 2011; Wang et al., 2010; 

Wang et al., 2009), MPTP-lesioned rats showed cognition deficits accompanied by 

neurodegeneration in the nigrostriatal system and hippocampus, and thereby may model the 

symptoms and pathophysiology of PDD. These results suggest that blocking mGluR5 may 

have beneficial effects on neuronal and behavioral impairments in PDD.    

In line with our previous report, catalepsy was observed after MPTP lesioning, but not 

sham operation, and this maintained for around 4-5 days and recovered at day 7 (Ho et al., 

2011; Sy et al., 2010). Spontaneous motor recovery was observed in all of the MPTP-lesioned 

rats, irrespective of whether they received MPEP treatment or not. Motor recovery was 

further supported by the lack of a difference between the groups in rearing number in the 

object recognition test, suggesting that behavioral performance in the tests was not 

confounded by gross motor impairment or general sickness. When comparing the 

MPTP-induced and other PD models, for example, 6-OHDA lesion model, the MPTP model 

would seem more favorable as it produces a bilateral dopamine lesion, similar to the slow 

onset of idiopathic PD (Potashkin et al., 2011), whereas the 6-OHDA model is classically an 

unilateral lesion (Iancu et al., 2005). In the unilateral model, it takes around 2 weeks to cause 

full dopamine lesion after injection of 6-OHDA into the medial forebrain bundle, which may 

mimic the progressive loss of neurons seen in PD. The MPTP bilateral lesion model is 

considered more relevant to PD since both hemispheres are dopamine depleted and they may 

have more specificity towards behavioral impairments (Potashkin et al., 2011), including, but 

not limited to, cognitive dysfunctions, as demonstrated in the current study. However, the 

MPTP model fails to encompass the wide assortment of motor impairments seen in PD 

patients.    

Sub-chronic treatment with MPEP prevented the MPTP-induced deficits in working 

memory and object recognition. In the T-maze test, the rat has to learn a rule to make the 
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correct choice to obtain a reward in the test run, in which the food was located in the arm that 

was closed in the previous forced run. Thus, performance in the T-maze test is regarded as 

working memory because the location of the reward pellets is trial-dependent (Ando et al., 

2002). In the present study, the sham-operated rats showed around 80% of correct responses, 

significantly higher than chance (50%). MPTP lesioning significantly decreased the 

percentage of correct responses in the T-maze test, indicating impairment of working memory. 

Previous studies have also found that MPTP-lesioned rats show disturbances of working 

memory (Bellissimo et al., 2004; Braga et al., 2005; Ho et al., 2011; Hsieh et al., 2012) and 

episodic-like memory (Wang et al., 2010) and impairments of learning and memory in the 

two-way active avoidance test (Da Cunha et al., 2001; Ferro et al., 2005; Gevaerd et al., 2001), 

and have thus suggested these rats can model PD amnesia. Rats in the object recognition test 

have a natural tendency to spend more time exploring novel, rather than familiar, objects 

when there are two choices, reflecting discrimination between novel and old objects 

(Ennaceur and Delacour, 1988). In the present study, the MPTP-lesioned rats did not show 

this phenomenon, indicating a deficit in object recognition. Although the value of percentage 

of time spent exploring new object seems higher than that spent exploring old object, there 

was no significance. This result was in line with our previous reports (Ho et al., 2011; Hsieh 

et al., 2012; Sy et al., 2010; Wang et al., 2009). Two weeks of MPEP treatment prevented the 

MPTP-induced deficits in working memory and object recognition. Similarly, a previous 

report showed that an 8-day treatment of MPEP at the dose of 3 mg/kg/day antagonized 

visuo-spatial discrimination deficit induced by bilateral 6-OHDA lesioning of the striatum in 

mice (De Leonibus et al., 2009). These results suggest that mGluR5s may be involved in the 

cognitive impairment in PD.    

Impairments of memory and recognition, the cardinal symptoms of PDD, might result 

from dysfunction of the hippocampus, as this brain area is involved in spatial navigation 

(Zhang et al., 2004), visual recognition, recognition memory (Broadbent et al., 2004), and 

short-term memory associating an object and its location (Li and Chao, 2008; Piekema et al., 

2006). Moreover, the hippocampal CA1 area is responsible for temporal and working memory 

(Hunsaker et al., 2006) and for recognizing the spatial arrangement of objects (Wan et al., 

1999). The present study showed that MPTP lesioning significantly suppressed working 

memory and object recognition and that these behavioral impairments were accompanied by 

cell loss in the hippocampal CA1 area. Interestingly, MPEP treatment prevented both the 

behavioral changes and the cell loss. Moreover, DAergic degeneration in the nigrostriatal 
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system causes an increase of ligand binding to mGluR5 in the hippocampus (Zhu et al., 2007). 

We therefore suggest that there may be an up-regulation of mGluR5 in the hippocampus of 

the current PD model and this change may thus lead to glutamatergic dysfunction and be 

involved in the cognition impairment and cell loss in the hippocampus.    

  A previous study demonstrated the presence of activated microglia in PD brains and 

suggested that these cells are involved in the neurodegenerative process (McGeer et al., 1988). 

Another animal study demonstrated that microglial activation occurs in the brain after MPTP 

lesioning (Kohutnicka et al., 1998), while others showed that activated microglia are seen in 

the SNc of rats at two weeks after lesioning (Ho et al., 2011; Sy et al., 2010; Wang et al., 

2010), indicating that neurodegeneration leads to microglia activation. In addition, activated 

microglia release inflammatory cytokines (Yasuda et al., 2008), which may lead to cell death 

(Nakajima and Kohsaka, 2004) and aggravate neuroinflammation and thus play an important 

role in the pathophysiology of PD (McGeer and McGeer, 2004). In the present study, MPTP 

lesioning caused microglial activation in the SNc, which was prevented by MPEP treatment. 

Parallely, MPTP-induced DAergic degeneration in the SNc and striatum was also abolished 

by MPEP treatment, indicating a correlation between microglial activation and 

neurodegeneration.     

Glutamate, an excitatory neurotransmitter abundantly distributed in the central nervous 

system, can activate NMDA receptors and mGluR5s (Daw et al., 1993). Hyperactivation of 

the glutamatergic system has been reported to play a critical role in the neuronal and 

behavioral symptoms in the PD rat model (Battaglia et al., 2004). Degeneration of DAergic 

system induced by 6-OHDA lesioning results in an up-regulation of mGluR5 in the striatum 

(Zhu et al., 2007). Stimulation of mGluR5 facilitates glutamate release in the striatum 

(Rodrigues et al., 2005). MPTP lesioning has also been reported to increase glutamate release 

in the striatum (Robinson et al., 2003), cause hyper-glutamatergic activity in the STN (Mosley 

et al., 2006), and result in excitotoxicity (Mosley et al., 2006; Plaitakis and Shashidharan, 

2000). These changes may be involved in neuroinflammation and cell loss in the DAergic 

system and hippocampus in PD brains (Imamura et al., 2003). Since that NMDA receptors are 

densely distributed in some brain regions, for example, the striatum and hippocampus 

(Monaghan and Cotman, 1985), and that mGluR5s are abundantly expressed in basal ganglia 

structures, particularly the STN (Testa et al., 1994), glutamatergic dysfunction induced by 

MPTP may underlie the neurodegeneration in the SNc, striatum, and hippocampus and may 
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explain the behavioral deficits seen in MPTP-lesioned rats. Furthermore, there are reciprocal 

synergistic interactions between mGluR5s and NMDA receptors (Turle-Lorenzo et al., 2005). 

Activation of mGluR5s positively modulates NMDA receptors by relieving the Mg2+ 

blockade of NMDA receptors (Bruno et al., 2001). Stimulation of mGluR5s causes excitation 

of neurons in the STN that further potentiates NMDA-induced activation of STN neurons 

(Awad et al., 2000). In addition, activation of NMDA receptors amplifies the activity of 

mGluR5s by preventing receptor desensitization (Alagarsamy et al., 1999). Although the use 

of compounds blocking NMDA receptors has been demonstrated to result in an improvement 

in motor activity (St-Pierre and Bedard, 1995), cognitive function (Hsieh et al., 2012), and 

survival of nigrostriatal DAergic neurons in the PD rat model (Ferro et al., 2007; Turski et al., 

1991; Zuddas et al., 1992), the therapeutic potential of NMDA antagonists is substantially 

hampered by the occurrence of significant neurological side effects. Thus, compounds acting 

on mGluR5s show promise for the treatment of PD (Marino et al., 2003).   

There are several potential mechanisms and possible brain sites at which MPEP might 

have acted after its systemic administration. More likely, MPEP could modulate glutamate 

release. Previous reports have shown that lesions of the nigrostriatal DAergic system by 

6-OHDA in rats caused mGluR5 up-regulation in different brain regions, such as 

hippocampus, frontal cortex, and striatum (Pellegrino et al., 2007; Zhu et al., 2007). 

Decreasing glutamate release and its excitotoxic consequence is likely a mechanism by which 

MPEP exerts neuroprotective function in the DAergic system and hippocampus because 

MPEP can block glutamate release induced by mGluR5 stimulation (Rodrigues et al., 2005). 

Moreover, mGluR5 blockade in the nuclei of the basal ganglia may also be responsible for the 

effects of MPEP. The STN is a key nucleus in the basal ganglia that provides the major 

glutamatergic excitatory input to the basal ganglia output nuclei. The STN plays a critical role 

in motor function as well as in the pathophysiology of PD (Marino et al., 2003). 

Immunohistochemical studies at the light and electron microscopic levels indicate that 

mGluR5s are localized in the neurons of STN and of substantia nigra pars reticulate (SNr); 

activation of mGluR5 causes depolarization of neurons in the STN (Awad et al., 2000) and 

excitation of SNr projection neurons (Marino et al., 2001), indicating that mGluR5 plays an 

important role in excitatory control of STN on motor circuit in the basal ganglia. It has been 

shown that akinetic deficits in 6-OHDA lesion-induced PD rat model are associated with 

increased neuronal metabolic activity in the STN and SNr. The above akinesia and increase of 

nuclei activity are alleviated by a 3-week chronic treatment with MPEP at the doses of 1.5 
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and 3 mg/kg/day (Armentero et al., 2006; Breysse et al., 2003; Breysse et al., 2002; 

Turle-Lorenzo et al., 2005). These results suggest that MPEP, through blocking mGluR5, may 

reduce the overactivity of STN neurons, decrease excitatory drive in the basal ganglia, and 

limit the excitotoxicity associated with hyperactivity of glutamatergic system (Blandini, 2001) 

and may thus result in symptomatic relief in PD. The present study provided further support 

for the above hypothesis by showing that sub-chronic systemic MPEP treatment inhibited the 

cognitive deficits and neuronal degeneration in the MPTP-induced PD rat model. Our data 

agree with a report showing protective effects of MPEP against MPTP-induced neurotoxicity 

in the nigrostriatal DAergic system (Aguirre et al., 2005).   

The important role of mGluR5s in synaptic plasticity, learning, and memory (Balschun 

and Wetzel, 2002; Petersen et al., 2002) may raise concerns about using MPEP for the 

treatment of dementia in PD, but no adverse side effects were observed in the present study. 

In addition, a previous study also showed that both acute and sub-chronic administrations of 

MPEP at the dosage of 3 mg/kg/day do not affect the function of visuo-spatial discrimination 

in control mice (De Leonibus et al., 2009). Administration of MPEP to patients with PD 

might therefore have both symptomatic and neuroprotective effects (Blandini and 

Greenamyre, 1998; Blandini et al., 2000). Further, although the acute manifestations of 

DAergic lesion and behavioral changes in the MPTP-treated rats are different from the 

progression of neurodegeneration and onset of symptoms with time seen in PD patients, 

MPTP-induced DAergic degeneration maintains for a long period (Sy et al., 2010), which 

may replicate the late course of PD. Thus, an effective treatment for preventing neuronal loss 

and behavioral deficits in this model may imply a potential of application in PD. Nevertheless, 

caution is required when applying data from animal studies to humans (Potashkin et al., 2011). 

Finally, a single dose, 2 mg/kg/day, of MPEP was used in the present study, so we do not 

know whether different results would have been obtained if higher or lower doses of MPEP 

had been used.  

In summary, the present study shows that sub-chronic administration of MPEP inhibits 

MPTP-induced deficits in working memory and object recognition and suppresses 

neuroinflammation and neurodegeneration in the DAergic system and hippocampal CA1 area. 

These data provide support for a role for mGluR5s in the pathophysiology of PD and suggest 

that MPEP is a promising pharmacological tool for the development of new treatments for 

PDD.        
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Fig. 1. Effects of MPEP on catalepsy in MPTP-lesioned rats in the bar test. MPTP (1 μmol) was 
bilaterally infused into the substantia nigra pars compacta, then MPEP (2 mg/kg/day, i.p.) or 
saline (1 ml/kg/day, i.p.) was administered from day 1 after MPTP lesioning for 14 days. The 
bar test was performed on days 1 and 7 after MPTP lesioning. The data are expressed as the 
mean±SEM for the indicated number of rats. ** P<0.01, *** P<0.001 compared to the 
sham-operated controls.   
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Fig. 2. Effects of MPEP on the behavior of MPTP-lesioned rats in the T-maze test. Animals were 
treated as in Fig. 1 and the T-maze test was performed on day 10 after surgery. The data are 
expressed as the mean±SEM. *** P<0.001 compared to the sham+saline group.   
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Fig. 3. Effects of MPEP on object recognition in MPTP-lesioned rats. Animals were treated as in Fig. 
1 and the object recognition test was performed on days 12–14 after surgery. (A) Schematic 
diagram of the arrangement of the objects in the test. Rats underwent 3 exposure sessions (5 
min each) at 24 h intervals, then were tested for 5 min starting 5 min after the end of exposure 
session 3. In the test session, object “B” was replaced by a novel object “D”. (B) Percentage 
of time spent exploring object “B” or “D”. (C) Rearing number in the exposure and test 
sessions. The data are expressed as the mean±SEM. ** P<0.01, *** P<0.001 compared to the 
percentage of time spent exploring object “B” (paired t-test).    
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Fig. 4. Effects of MPEP on the MPTP-induced change in dopaminergic neurons in the SNc on day 15 
after surgery. Animals were treated as in Fig. 1. Dopaminergic neurons stained for tyrosine 
hydroxylase are shown in representative coronal sections. Magnification, 50×; bar, 200 μm. 
The black square in the schematic drawing indicates the area used for measuring the density 
of dopaminergic neurons. *** P<0.001 compared to the sham+saline group. ### P<0.001 
compared to the MPTP+saline group.   

 

 

 

Fig. 5. Effects of MPEP on the MPTP-induced change in tyrosine hydroxylase immunoreactivity in 
the striatum on day 15 after surgery. Animals were treated as in Fig. 1. Magnification, 50×; 
bar, 200 μm. The black square in the schematic drawing indicates the area used for measuring 
the optical density (OD). *** P<0.001 compared to the sham+saline group. ## P<0.01 
compared to the MPTP+saline group.   
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Fig. 6. Effects of MPEP on the MPTP-induced activation of microglia in the SNc on day 15 after 
surgery. Animals were treated as in Fig. 1. Magnification, 50×; bar, 200 μm. A high 
magnification image (200×, bar, 20 μm) of activated microglia is shown in the inset. The 
black square in the schematic drawing indicates the area used for measuring the density of 
activated microglia in the SNc. *** P<0.001 compared to the sham+saline group. ### P< 
0.001 compared to the MPTP+saline group.   

 

 

 

 

Fig. 7. Effects of MPEP on the MPTP-induced cell loss in the hippocampal CA1 area on day 15 after 
surgery. Animals were treated as in Fig. 1. The images show Nissl-stained pyramidal neurons 
in the CA1 area of the hippocampus (Hip), as indicated in the square in the schematic 
drawing. Magnification, 200×; bar, 100 μm. *** P<0.001, compared to the sham+saline group, 
## P<0.01, compared to the MPTP+saline group.   
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