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Mol & T S (microfluidic chip platform), #cid & % st
(Micro Electro Mechanical Systems, MEMS), icéio "z
(micromirror arrays)

The integration of biological assays and chemical
reactions into microfluidic chip platforms has
numerous advantages including automated sample
processing, miniaturized analytical system, and
sensitive detection onto a single microdevice.
Moreover, the unique behavior of liquids on micro-
scale allows better control of molecular diffusion
and interactions. In addition to high through-put
analysis, performing experiments on a micro-device
will also reduce the cost of purchasing chemicals as
well as the amounts of chemical wastes. This
research includes the following three portions: (I)
the development of UV optical path platform
consisting of the core components of MEMS (Micro
Electro Mechanical Systems), such as micromirror
arrays and the light source, as well as its control
for beam steering and accurate positioning of optical
microarray ; (II) the design, fabrication and
automatic control of microfluidic chip platform,
which could be used for parallel assays with multiple



B Mg

reagents to achieve multistep biological and/or
chemical processes; (III) the integration of optical
and microfluidic chip platforms as well as the
automation of the entire system for performing high
through-put biological and/or chemical processes on a
microfluidic chip. This newly developed optical and
microfluidic platform was utilized as a protein
detection system by immobilizing glycohydrolase on
photoresistant surface to quantify glycohydrolase
kinetic in sample solution.

Hoon Al 8 8 T 5 (microfluidic chip platform), o= & st
(Micro Electro Mechanical Systems, MEMS), #csto 7|
(micromirror arrays)
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Design, fabrication and automatic control of microfluidic chip

platform for bioassay
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Research Project (FF X3t $):

@RACERAHLEFNRAN I A T 5 EERHTZRA, (08/2012~07/2013, B4 &
AL E, LHA & 2R, NSC 101-2113-M-040-002-)

1. Development and Automation of Microelectromechanical Systems-Based Biochip Platform for

protein Assay

Abstract

Miniaturized devices (lab-on-a-chip) for performing laboratory operations on microscale are appealing.
Low sample requirement is one of the major advantages of these devices, therefore less costs is needed
for running such platforms and also fewer wastes to be handled. Together with the unique behavior
of liquids on microscale facilitating control of molecular diffusion and interaction makes miniaturized
devices particularly useful in chemical synthesis as well as biological and/or chemical analysis. In this
report, we designed a microfluidic platform with programmable microvalves capable to carry out
routine operations. This platform was further optimized to contain universal sample-processing
capabilities, using a three-layered hybrid PDMS-PDMS—glass structure. Precise programmable control
of the volumetric flow rate can be achieved via the discrete digital control of fluids in pneumatically
actuated microvalves. The specific protocols of the system are optical path platforms consisting of
MEMS combined with photoresist arrays in microfluidic reactors for parallel biological analysis. To
demonstrate the programming capabilities for biomolecular assay integration, we developed an
automated assay with streptavidin immobilized on the photoresist patterned surface; these optical
microfluidic platforms featured with a low sample requirement (0.5 pl per single assay) were then
employed as a protein sensor, which has working concentrations ranged from 39.3 to 2500 nM for
detecting biotin in the sample solution. The results suggest potential applications of these platforms in
either routine assay purposes or specific applications such as high-throughput screening of

protein-protein and protein-ligand interactions.
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a. Bio manipulation platform — Microfluidic channels, microvalves and micropump have been

designed, simulated and fabricated for chemical and biochemical reaction.

(a)
Figure 1. (a) Microfluidic chips & Microfluidic chip platform setup and the home-made

microfluidic controller box.

b. microfluidic chip

A microfluidic chip includes a base layer, a fluid layer, and a gas regulating layer. The base layer
includes a microarray detecting zone. The microarray detecting zone includes a substrate, a
photoresist pattern layer, a blocking layer, a bonding layer, at least one linker molecule, and a probe
molecule. The bonding layer is covalently attached to the photoresist pattern layer. The at least one
linker molecule is covalently bonded to the binding layer. The probe molecule is covalently bonded
to the at least one linker molecule for specifically reacting with an under-test molecule. The fluid
layer is disposed over the base layer, and includes plural flow channels for introducing or collecting
detecting reagents. The gas regulating layer is disposed over the fluid layer for controlling open/close

statuses of the flow channels, thereby controlling a flowing condition of a fluid in the fluid layer.

0 002 004 006 008 0.1 0.12 0.14 0.16
Pressure (MPa)

(a) (b)

Figure 2. (a) Fabrication process on glass, (b) Microvalve closing vs applied pressure.

c. Simulation. Valve characteristics were first simulated under a wide range of conditions. We

considered three major factors including (i) the width/height ratio of the microchannels, (ii) the



dimensions of the microchannels, and (iii) the PDMS thickness.

Microvalve Simulation in Coventor

Fgure 3. Computational model of a microvalve consisting of a ®X300°X100 pm control channel, a
nX300°X10 pm fluidic channel, and a 42-pum-thick membrane. (left) Undeformed configuration (right)

Deformed configuration at actuation pressure.

d. A Virtual Mask Exposure System. A functional virtual mask MEMS-based projection system is

set up. View interface and image arrays of 200 mm spots can be generated.

(a) FEZFAK MEETE (b)
Figure 4. Optical path platform. (a) A Virtual Mask Exposure System. (b) Microarray patterns
generated by our home-made virtual mask exposure system: arrays with spot size of 200 um.

e. System integration — An user interface integrated image processing program and controller has

been designed and demonstrated.

f. Biochip and fabricating method thereof

A biochip and a fabricating method thereof are disclosed. The biochip includes a substrate, a
photoresist pattern layer formed on a surface of the substrate, a blocking layer formed on the surface of

the substrate which is not covered by the photoresist pattern layer, a bonding layer covalently bonding
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to the photoresist pattern layer, at least a linker molecule covalently bonding to the binding layer, and a

probe molecule covalently bonding to the linker molecule for reacting with a molecule to be detected.

g. Initial system verification using biotin-streptavidin interaction is in progress.

Figure 5. Microarray patterns generated by our home-made virtual mask exposure system: arrays with
spot size of 300 um. Magnetic Particles as Labels in Bioassays: Interactions between a Biotinylated
Substrate and Streptavidin Magnetic Particles.

h. Fluorescence detection and data analysis. The fluorescent images were captured using a CCD
camera cool SNAP HQ2 (Nikon, Tokyo, Japan) with a 400 ms exposure time. Relative fluorescence
intensity was used to quantify the yield of biotin-4-fluorescein, which was calculated by scaling the
intensity of the fluorescent particles to that of the reference area on the device. Data were analyzed by
NIS-Elements BR410 Image analysis software.

The intensity values were calculated to average the intensity of each pixel for each spot. The
density of the reactions was quantified by reporting the mean values of fluorescence density on a
calibration curve, which was manually produced by spotting a dilution series of biotin-4-fluorescein on

a glass substrate (0.5 ul/spot).

Relative Intensity versus Conc. (mM)
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Conclusion

Advances in monolithic membrane valve technology have developed processing platforms for digital
microfluidic assay automation. The programmability, routing, and low-sample volume requirements
conferred by these systems offer significant advantages compared with conventional benchtop robotic
laboratory automation systems. The digital transfer of fluids between microvalves in the automated
microfluidic platform allows diverse serial and combinatorial sample processing operations on a
microchip. The feature of programmability in this platform enables multiple applications within a
single system which can be exploited to replace the specialized microfluidic circuits used in
conventional lab-on-a-chip devices. Here we fabricated arrays of micro-pillars in the microreactor
using an optical path platform with UV light, a lens and a DMD for the photopolymerization of an
adhesive SU-8 substrate glued to treated glass slides. We demonstrated that the dimensions of the pillar
and the quantity of the photopresist layers can be modulated by adjusting the patterning parameters.
The photopresist microarray presented in this study was applied in protein immobilization; the
identification of specific interactions with the immobilized protein can be achieved by detecting
fluorescent moiety labeled on analytes. With the advantages described above, the automated
microfluidic platform with an optical path reported here can be further exploited either to routine assay

purposes or specific applications such as high throughput screening of protein-protein and
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protein-ligand interactions.

2. Development and Automation of Microelectromechanical Systems-Based Biochip Platform for
enzyme Assays

Abstract

The integration of biological assays and chemical reactions into microfluidic chip platforms has
numerous advantages including automated sample processing, miniaturized analytical system, and
sensitive detection onto a single microdevice. Moreover, the unique behavior of liquids on micro-scale
allows better control of molecular diffusion and interactions. In addition to high through-put analysis,
performing experiments on a micro-device will also reduce the cost of purchasing chemicals as well as
the amounts of chemical wastes. This research includes the following three portions: (I) the
development of UV optical path platform consisting of the core components of MEMS (Micro Electro
Mechanical Systems), such as micromirror arrays and the light source, as well as its control for beam
steering and accurate positioning of optical microarray; (II) the design, fabrication and automatic
control of microfluidic chip platform, which could be used for parallel assays with multiple reagents to
achieve multistep biological and/or chemical processes; (III) the integration of optical and microfluidic
chip platforms as well as the automation of the entire system for performing high through-put
biological and/or chemical processes on a microfluidic chip. This newly developed optical and
microfluidic platform was utilized as a protein detection system by immobilizing glucosidase on

photoresistant surface to quantify enzyme and enzyme kinetic in sample solution.
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Table 1. Comparisons of the microfluidic chip system and conventional fluorescence

spectrophotometer
Microfluidic chip Fluorescence
spectrophotometera
Minimum sample volume (pl) 0.5 3000
Working concentrations (nM) 39.3-2500 39.3-2500
Minimum sample requirement (fmole) 19.65 117900

®Hitachi F-2500 fluorescence spectrophotometer

Conclusion
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