Lee and Sheu BMC Bioinformatics 2014, 15:339
http://www.biomedcentral.com/1471-2105/15/339

BMC
Bioinformatics

METHODOLOGY ARTICLE Open Access

An algorithm of discovering signatures from
DNA databases on a computer cluster

Hsiao Ping Lee'? and Tzu-Fang Sheu?”

Abstract

Background: Signatures are short sequences that are unique and not similar to any other sequence in a database
that can be used as the basis to identify different species. Even though several signature discovery algorithms have
been proposed in the past, these algorithms require the entirety of databases to be loaded in the memory, thus
restricting the amount of data that they can process. It makes those algorithms unable to process databases with
large amounts of data. Also, those algorithms use sequential models and have slower discovery speeds, meaning that
the efficiency can be improved.

Results: In this research, we are debuting the utilization of a divide-and-conquer strategy in signature discovery and
have proposed a parallel signature discovery algorithm on a computer cluster. The algorithm applies the divide-and-
conquer strategy to solve the problem posed to the existing algorithms where they are unable to process large
databases and uses a parallel computing mechanism to effectively improve the efficiency of signature discovery. Even
when run with just the memory of regular personal computers, the algorithm can still process large databases such as
the human whole-genome EST database which were previously unable to be processed by the existing algorithms.

Conclusions: The algorithm proposed in this research is not limited by the amount of usable memory and can
rapidly find signatures in large databases, making it useful in applications such as Next Generation Sequencing
and other large database analysis and processing. The implementation of the proposed algorithm is available at
http://www.cs.pu.edu.tw/~fang/DDCSDPrograms/DDCSD.htm.

Keywords: Signature discovery, Computer clusters, Divide-and-conquer strategies

Background
Mutations give diversity to DNA sequences, which led to
the evolution of a variety of different species and a multi-
tude of species from the same ancestor. Even though they
have similar DNA sequences from a common ancestor,
due to evolution, these species also have their own unique
DNA sequences which may be understood as the signa-
tures for those particular species and can be used as a
way to separate the species [1,2]. For example, DNA signa-
tures have already been used to identify 14 types of human
pathogenic yeast [3].

Signatures are defined as DNA patterns that are sig-
nificantly different from other sequences and appear

*Correspondence: fang@pu.edu.tw

Department of Computer Science and Communication Engineering,
Providence University, 200, Sec. 7, Taiwan Boulevard, 43301 Shalu Dist,,
Taichung, Taiwan
Full list of author information is available at the end of the article

() BiolVled Central

only once in the sequence database. Thus, the pur-
pose of signature discovery is to find all of the sig-
natures in a database [4]. Much research has already
been conducted in signature discovery. Amin et al. inte-
grated multiple bioinformatics tools, including CG [5]
and IslandPath [6], to determine horizontally transferred,
pathotype-specific signature genes as targets for specific,
high-throughput molecular diagnostic tools and reverse
vaccinology screens [7]. PrimerHunter can be used to
select highly sensitive and specific primers for virus
subtyping identification [8]. To guarantee high sensitiv-
ity and specificity, PrimerHunter selects primers such
that they efficiently amplify one of the target sequences
representing different isolates of the subtype of inter-
est, and none of the non-target sequences representing
isolates of closely related virus subtypes. Accurate esti-
mates of the melting temperature of mismatches, based
on a nearest-neighbor model and calculated via a frac-
tional programming algorithm, are used in PrimerHunter

© 2014 Lee and Shev; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication

waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise

stated.

http://www.cs.pu.edu.tw/~fang/DDCSDPrograms/DDCSD.htm
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Lee and Sheu BMC Bioinformatics 2014, 15:339
http://www.biomedcentral.com/1471-2105/15/339

to ensure the desired amplification properties. TOFI is
a tool for identifying oligonucleotide fingerprints for
microarray-based pathogen diagnostic assays, which com-
bines genome comparison tools, probe design software,
and sequence alignment programs [9,10]. TOFI is typi-
cally used to design fingerprints for a single genome. An
enhanced multiple-genome pipeline presented by Satya
et al. allows for efficient design of microarray probes
common to groups of target genomes [11]. Insignia is
web-based tool for identifying genomic signatures that
are perfectly conserved by all target genomes and absent
from all background genomes based on databases of
bacterial and viral genomic sequences, which comprise
over 8300 distinct organisms [12,13]. TOFI designs sig-
natures for microarray-based assays, and Insignia finds
unique sequence segments that can be used to design
both PCR and microarray signatures. Insignia and TOFI
have the ability to identify genomic signatures that are
common to multiple target genomes. Insignia and TOFI
perform similar computations, but Insignia can be run
online and requires less computational resources. TOFI
and Insignia both build consensus regions among multiple
genomes through pairwise alignments between the tar-
get genomes. Insignia reports only the unique segments
in the target genomes and provides an option for users
to run Primer3 [14], a PCR signature design software,
on these unique segments. To quickly identify signa-
tures in target and background genomes, Insignia has to
maintain a specialized database containing pre-computed
matches between every pair of genomes. However, the
concomitant advantage in speed comes with the limita-
tion that users are restricted to the target and background
genomes that are part of the Insignia database, with no
option to use other sequences as target or background
genomes. TOPSI is a tool that extends the TOFI frame-
work to design signatures for PCR-based pathogen diag-
nostic assays [15]. Like Insignia, TOPSI identifies unique
segments through pairwise alignments between the input
genomes. However, TOPSI goes beyond identification of
unique segments, and incorporates modules to design
PCR signatures from the unique segments and perform
extensive specificity analysis on the designed signatures.
TOPSI can provide a list of PCR signatures common to
all input targets without manual manipulation. CaSSiS is
capable of computing comprehensive sets of sequence-
and group-specific signatures that guarantee a prede-
fined Hamming distance, the number of mismatches with
non-target sequences, from collections of deeply hierar-
chically clustered sequences [16]. CaSSiS tries to deter-
mine perfect group-covering signatures for every target
group. For groups lacking a perfect common signature,
CaSSiS finds signatures with maximal group coverage
within a user-defined specificity. Zheng’s algorithm uses
the Hamming distance between sequences as a measuring

Page 2 of 10

stick for signature discovery [17]. Suppose [and d are
two whole numbers. An [-pattern represents the DNA
sequence with a length of /. If two [-patterns are (/,d)-
similar, this means that the Hamming distance between
the two [-patterns does not exceed d. Moreover, if (},d)-
similar [-patterns could not be found, the pattern is
defined as a signature under the discovery condition (/,d)
in the database. Zheng’s algorithm can find all of the signa-
tures in a database as defined above. The IMUS algorithm
improved upon Zheng’s algorithm to give better discov-
ery efficiency, but requires a larger memory [18]. Based
on mathematical analysis, if a discovery condition is set
as (I = 24,d = 4), when discovering signatures in a
uniformly distributed database with a size of 230, IMUS
requires only 7.4% of the string comparisons made by
Zheng’s algorithm but creates 256 times more entries in
the index. CMD is designed to discover all implicit signa-
tures from DNA databases, where implicit signatures are
signatures that satisfy discovery conditions looser than a
given discovery condition [19].

However, none of the above algorithms distribute the
computation of the databases onto multiple computers in
a cluster. To use the algorithms in such a way, additional
scripts must be applied to control the distribution and col-
lection of the databases and results. Unfortunately, many
of these approaches do not provide a formal definition
for their distribution strategies. Some of the approaches,
for example Insignia and CaSSiS, provide strategies to
distribute the computation of the databases onto multi-
ple computers in a cluster, but the steps of distribution
and collection are not automatic. Manual manipulation is
necessary to use these algorithms to distribute the com-
putation of the databases onto multiple computers in a
cluster. The match pipeline in Insignia applies strategies
to reduce redundancy in sub-datasets, but relies mainly
on preprocessing. PTPan [20], Jellyfish [21] and DSK [22]
apply different strategies to avoid the necessity of load-
ing the whole database into memory for searches. Each of
the three approaches uses secondary storage. For example,
Jellytish and DSK use hash tables to compute the k-mers
for a given k. Both algorithms achieve space efficiency by
keeping most of the hash tables on disk. When count-
ing k-mers over multiple hash tables, Jellyfish would need
to store the intermediate k-mer counts on disk, which
requires significantly more space, and the merge phase
is not parallelized. This makes the algorithm time inten-
sive for large databases. IMUS and Zheng’s algorithm both
have two disadvantages. First, these algorithms require
that the entire database to be processed (including all of
the data structures that were used during computation)
be loaded into memory, meaning that when the amount
of data exceeds the memory capacity, these algorithms
are unable to complete processing and cannot be used.
Second, they are both sequential algorithms, so the time

Lee and Sheu BMC Bioinformatics 2014, 15:339
http://www.biomedcentral.com/1471-2105/15/339

necessary for larger databases is extensive. Due to these
two disadvantages, neither IMUS nor Zheng'’s algorithm
is suitable for applications that require processing large
databases. This is a particular problem with the develop-
ment of Next Generation Sequencing (NGS), as the rate of
creation of sequence data is increasing daily, leading also
to larger databases. This renders both IMUS and Zheng’s
algorithm, which are unable to process large amounts of
data and require longer processing times, unsuitable for
NGS data analysis.

Divide-and-conquer is a computational strategy for
solving both extensive and complicated problems and pro-
cessing large amounts of data. The basic thought behind
this is as follows: suppose the amount of data that needs
to be processed for a problem is represented by |D|. If
|D| is smaller, it can be easily solved and can be solved
directly. Otherwise, the problem may be divided into mul-
tiple smaller scale subproblems with close similarities to
the original problem. These subproblems may be solved
recursively, and the results combined to find a solution
to the original problem. Therefore, with the divide-and-
conquer strategy, each recursion may include three main
steps: (1) solve: if the problem is smaller in scale and easy
to solve, it looks for a solution directly; (2) divide-and-
recur: divide the original problem into multiple smaller
scale subproblems closely similar to the original prob-
lem, then recursively try to find the solution to each
subproblem; (3) combine: take the solutions from the sub-
problems and combine to find the solution to the original
problem [23]. In addition, as technology has matured,
the price of multi-core CPUs has continued to fall, so
the possibility to use parallel processing technology on
a computer cluster to enhance processing efficiency has
greatly improved. In fact, parallel processing technology
is already used in many bioinformatics research fields,
such as sequence alignment and analysis, protein struc-
ture prediction, and motif finding [24-31]. If we can use
the divide-and-conquer strategy and parallel processing
technology in signature discovery, this will improve the
efficiency of discovery in large databases, which will be
immensely helpful.

In this research, we propose a signature discovery
algorithm called distributed divide-and-conquer-based
signature discovery (DDCSD) algorithm. The DDCSD
algorithm is designed specifically for discovering sig-
natures on a computer cluster. The DDCSD algo-
rithm automatizes the steps of distributing the database
and collecting the unique signatures. The signatures
are discovered from the database and provided to
users without manual manipulation. The DDCSD algo-
rithm uses the divide-and-conquer strategy to overcome
the problem of processing large databases and com-
pares multiple patterns in parallel to accelerate sig-
nature discovery. Therefore, the algorithm not only

Page 3 of 10

shortens the amount of time needed for discovery,
it also is able to process the large databases that could not
be processed in the past using IMUS and Zheng’s algo-
rithm. In addition, by setting the threshold value of the
direct discovery, DDCSD can limit the memory require-
ment in discovery to the memory size of the computers
in the cluster. More specifically, the DDCSD algorithm
can process any amount of data and is not limited by
the amount of memory available. The DDCSD algorithm
is implemented using a basic divide-and-conquer strat-
egy as the basic structure. First, it decides whether to do
direct discovery based on the size of the database. If the
database is too large to load in its entirety, it will split the
database into two equal parts and recursively processes
the parts. As the recursive processing is in progress, the
amount of data in a single part will gradually decrease
until it can load the single part all into the memory of
one computer in the cluster at one time. At the end, it
will combine the results that were found separately in the
two different parts and find the signatures in the orig-
inal database. The DDCSD algorithm gives the formal
definition in recursion for the dataset distribution strat-
egy, that is not provided by the previous approaches. The
DDCSD algorithm includes main and discovery routines.
The main routine organizes discovery in a planned way.
The discovery routine is used to find the unique pat-
terns from a specified dataset in another dataset. The
computation of discovery and collection in DDCSD is dis-
tributed onto discovery nodes for parallelization. Based on
the experiments made on the human whole-genome EST
database that has approximately 2.46G bases, the DDCSD
algorithm proposed here can successfully process that
database. Whereas previous algorithms could not process
databases so large, the DDCSD algorithm took 1.89 hours
to find all of the signatures under the discovery condi-
tion (30,2) on the cluster of ten discovery computers with
32 GB memory. The main contribution of this research
is utilizing the divide-and-conquer strategy in signature
discovery to process discovery in large databases, some-
thing previous algorithms were unable to do, and pro-
viding a parallel signature discovery algorithm on a clus-
ter, that can process databases of any size regardless of
the amount of memory available. This algorithm can be
applied to NGS data analysis and other analysis of large
databases.

Methods

Suppose that [and d represent the length and the num-
ber of allowed mismatches of signatures, respectively, and
A is a dataset made up of /-patterns. We define signa-
tures in A under a discovery condition (/,d) as patterns
that exist in A and where there are no other (/,d)-similar
patterns inside of A. The purpose of this research is to
utilize a divide-and-conquer strategy to provide a parallel

Lee and Sheu BMC Bioinformatics 2014, 15:339
http://www.biomedcentral.com/1471-2105/15/339

algorithm that can rapidly discover the signatures in
datasets with massive amounts of data on a computer
cluster.

For any subset ® of A, if no (/,d)-similar pattern can
be found in ©, this pattern is considered unique in ©.
According to this definition, we can deduce that if one
pattern P is a signature in A, then P must be unique
in ©. Therefore, if we divide A into two partitions of
equal size (A; and Aj), then P will be a signature for
either A; or A; and will be unique to the other partition.
Thus, when the signatures of A; and A; are combined,
they will include all of the signatures for A, making them
valid candidates to discover signatures in A. Most impor-
tantly, no matter how many levels of recursive processing
are applied, this characteristic still stands, meaning that
we can use the divide-and-conquer strategy on a com-
puter cluster to deal with the original problem posed
to signature discovery algorithms where they could not
process large databases. Using the above as the founda-
tion, we designed a distributed divide-and-conquer-based
signature discovery (DDCSD) algorithm that can rapidly
discover the signatures that satisfy the discovery condition
(/,d) in a large dataset on a computer cluster. The DDCSD
algorithm includes main and discovery routines. The dis-
covery routine accepts the candidate and source datasets
that are made up of [-patterns and will find the patterns
that are unique in the source in the candidate. It must
be made clear that when the candidate and source are
set as the same dataset, the patterns found by the discov-
ery routine are the signatures for the dataset. Each of the
computers in the cluster is called a node. The node that
handles the main routine is called a main node, and those
that handle the discovery routine are called discovery
nodes.

The main routine of the DDCSD algorithm is shown in
Figure 1. The symbols used in DDCSD are presented in

Require: A,l,d
if |A] < N then
Q < discoveryRoutine(A, A, [, d)
return
end if
divide A into two equal partitions A; and A;
Q; « discoveryRoutine(;, A;,1
Q; < discoveryRoutine(Q;, A;,1
Q< QU
return

a,

,a

d)
d)

IS

Figure 1 The main routine of the DDCSD algorithm. The
algorithm discovers signatures from A under the discovery condition
(I, d), where | and d are the length and the number of allowed
mismatches of the signatures, and, A is a dataset made up of
|-patterns. | A| represents the number of patterns in A. N is the preset
threshold value for direct discovery.

Page 4 of 10

Table 1. The DDCSD algorithm first examines the size of
the dataset A; if the number of patterns is less than or
equal to the preset threshold value, N, then it will auto-
matically send A to a discovery node and use the discovery
routine to find the signatures in A. The discovery result is
sent back to the main node. The threshold value is decided
based on the memory space of discovery nodes and is set
so that the patterns in A (including all of the used data
structures) can be loaded into the memory. On the other
hand, if the number of patterns is more than the preset
threshold, then A will be divided into two equal partitions
A; and Aj, with each being recursively processed individ-
ually. After recursive processing, the algorithm combines
the results to find the signatures of A. Suppose that Q;
and ; represent all of the signatures in A; and A, respec-
tively. Because all signatures of A must be present in either
Q; or ©; and will be unique to the other partition, addi-
tional comparisons must be made between ; and A; as
well as between €; and A; to find the patterns unique
in the other partition and delete the non-unique ones.
Therefore, DDCSD uses the discovery routine to find the
unique patterns in A; that are in ; and the unique pat-
terns in A; that are in ;. These two discovery results are
then combined, with the final result being the signatures
of A.

The following example illustrates the processes of
DDCSD. It is assumed that the number of patterns in a
given dataset A is |A| = 4N, where N is the threshold
value of direct discovery. As |A| is more than N, according
to the processing rule of DDCSD, A is divided into two
partitions, A1 and Ay, of equal size with |A|/2 = 2N. As
|A1]| is still greater than N, A; is further divided into two
partitions, A3 and Ay, of size N. Now, since |As| is not
greater than N, DDCSD stops dividing A3 into partitions,
and executes DiscoveryRoutine (A3, A3, [, d) on a discov-
ery node, which yields the signature set, Q3, from As.

Table 1 The symbols and their definitions in the DDCSD
algorithm

Symbols Definitions
/ The length of signatures
d The number of allowed mismatches of signatures
N The threshold value of direct discovery
A The input dataset made up of [-patterns
Ay A partitionof A, k=1,2,...
Q The set of signatures in A
Q The set of signatures in Ay
(€] The source in the discovery routine, corresponding to

A or Ay inthe main routine

m

The candidate in the discovery routine, corresponding to
Q or € in the main routine

Lee and Sheu BMC Bioinformatics 2014, 15:339
http://www.biomedcentral.com/1471-2105/15/339

Similarly, as | A4| is not more than N, DDCSD directly dis-
covers the signature set €24 from A4 on a discovery node.
Then, DDCSD executes DiscoveryRoutine (23, Aa,,d)
and DiscoveryRoutine (€24, A3, /,d) on discovery nodes,
respectively. The union of the obtained Q23 and €24 is the
signature set, 1, of Aj. Similarly, DDCSD processes A3
by dividing it into two partitions, As and Ag, each with a
size of N. From As and Ag, the signature sets Q25 and Q¢
are discovered. Then, Q5 and Q¢ are combined to obtain
the signature set of Ay, namely Q5. Finally, DDCSD com-
bines ©; and Q3 to get the signature set of A, namely
2. Table 2 shows the sequence of signature sets identi-
fied by DDCSD. The required processes for discovering
the signature sets are also presented in the table. The dis-
covery processes are encoded for clear illustration. Table 3
lists the processing time of the discovery processes shown
in Table 2. Assume that A, B, C, D, E, F, G, H, I and J
are discovery processes. The cluster contains two discov-
ery nodes, namely DN; and DNj. First, DDCSD assigns
DN and DN, to discovery processes A and B, respectively.
After the processing of discovery process A is completed,
DN; is immediately assigned to the next discovery pro-
cess, discovery process C. DN and DNj are assigned to
process the discovery processes, until all of the discov-
ery processes are completed. In this case, DN is assigned
to discovery processes A, C, E, F, G and J, and DN, is
assigned to discovery processes B, D, H and I. The discov-
ery time consumed by DN; and DN; is 15 seconds each,
so the overall discovery time is 15 seconds. It is notewor-
thy that some of the discovery processes are sequentially
interdependent. The sequential interdependence might
affect the overall processing time for discovering signa-
tures on the computer cluster. That is, when the preceding
discovery process needs relatively more processing time,
the successive dependent discovery process might have

Table 2 An example of DDCSD

Order Candidate Process Process ID
1 Q3 DR(A3, A3, 1, d) A
2 Q4 DR(A4, A, 1, d) B
3 Q4 DR(£23, A4, 1,d) C

DR(4, A3, 1,d) D
4 Qs DR(As, As, [, d) E
5 Q6 DR(As, As, I, d) F
6 Q) DR(S25, Ag, 1, d) G
DR(26, As, 1,d) H
7 Q DR(21, A, 1,d) /
DR(§22, A1,/ d) J

The Order field presents the order of the signature sets identified by DDCSD. The
Process field presents the required process for discovering each signature set.
The Process ID field lists the represented code of each discovery process. DR() is
the abbreviation of DiscoveryRoutine().

Page 5 of 10

Table 3 Processing time for the discovery processes shown
in Table 2

Process ID A B C D E F G H I J

Time 1 3 4 6 2 1 4 2 4 3

The Process ID field lists the discovery processes shown in Table 2. The Time field
presents the processing time of each discovery process. The time unit is seconds.

to wait. For example, DiscoveryRoutine (26, As, [, d) can
only be executed after DiscoveryRoutine (Ag, Ag, [, d) is
completed, that is, discovery process H can only be exe-
cuted after discovery process F is done. Assume the pro-
cessing time of discovery process F is 7 seconds. In this
case, although discovery process G is completed, discov-
ery process H cannot be immediately processed because
discovery process F is still executing. Therefore, discov-
ery process H has to wait. This reduces the discovery
efficiency of DDCSD.

Suppose that P and Q are two [-patterns. If P is divided
into equal and non-overlapping [//y] number of y-
patterns, these y -patterns are called y-segments of P. P,, ;
represents the i-th y-segment in P. P is called (y,i,§)-
matched to a y-pattern I' if P, ; is (y,é)-similar to I'.
We arrive at the observation that if P and Q are (/,d)-
similar, for a given y, there will be at least one i such that
Pis (y,i, |yd/l])-matched to Q, ;. Using the observation
as the foundation, we designed the discovery routine of
DDCSD.

The discovery routine of the DDCSD algorithm runs
on discovery nodes. The discovery routine allows multi-
ple processors to compare similarity of different patterns
at the same time to allow for faster discovery speed. The
discovery routine is shown in Figure 2. Suppose that the
candidate and source datasets received by the discovery
routine are E and O, respectively. First of all, the discov-
ery routine will set a suitable y according to the memory
that is available in the discovery node, where y is a whole
number between [l/(d + 1)] and [I/2]. The larger the
number, the less strings are compared during a discovery,
but more memory is needed. Conversely, the smaller the
number, the more strings are compared during a discov-
ery, but the memory requirement will be smaller. Suppose
that Y is a y-pattern. A (Y, y,i,/,d)-group is a group of
[-patterns. All of the [-patterns are (y, i, | yd/l])-matched
to Y. According to the y-segments included in the [-
patterns in E and ©, the discovery routine assigns the
[-patterns to (Y, y, i, [, d)-groups. More specifically, if P is
in g, then P will be put into (P ;, ¥, i, [, d)-groups, where
1 < i < [l/y]. For exampmle, assume that /, d and y
are 4, 2 and 2, respectively. If P = "ACGT’, then P will
be put into (' AC’,2,1,4,2)- and (' GT’, 2,2, 4, 2)-groups.
Assume that A is one of the (P, ;,y,i,[,d)-groups. Az
represents the set of Ps in A. According to the size of
the memory, the discovery routine can pull the patterns

Lee and Sheu BMC Bioinformatics 2014, 15:339
http://www.biomedcentral.com/1471-2105/15/339

Page 6 of 10

Require: Z,0,1,d

for a pattern P in = do
for i + 1to [I/v] do

end for
end for

repeat

the size of memory
for a pattern @ in Phi do

T, where 1 < i < [l/~]
end for

for a pattern P in Az do

discard P from Az and 2

end if

end while

and © are datasets made up of /-patterns.

put P into (Py,;,7,1,1,d)-group

until all patterns in © are processed
return the remaining patterns in =

from © that are in E under the discovery condition (/, d), where | and d are the length and the number of allowed mismatches of signatures, and, &

set a suitable v according to the available memory

® <+ pulling the patterns that have yet to be processed in © according to

put Q into (T, v, 4,1, d)-groups if Q is (7, ¢, | yd/l|)-matched to a y-pattern

while there are (T1,7,1,1,d)-groups yet to be processed do
wait for a processor that completes the task that it is given
A <« an unprocessed (T,~,1,1,d)-group
assign the processor to process A {beginning of parallel processing}

compare P to all patterns in Ag

if any (,d)-similar pattern to P is found then

end for{ending of parallel processing}

Figure 2 The discovery routine of the DDCSD algorithm. The algorithm runs on a discovery node. The algorithm discovers the unique patterns

—

that have yet to be processed in ©. If there are too many
patterns in ® which cannot be loaded into the mem-
ory all at once, it can split them into multiple parts and
load and process the parts one at a time. Suppose that ®
represents the group of patterns that are loaded at this
time. If Q is in ® and Q is (y, i, |[yd/l])-matched to a y-
pattern I', Q will be put into (T, y, i, [, d)-groups, where
1 < i < [l/y]. For example, assume that /, d and y are 4,
2 and 2, respectively. If Q = ' TGCA’, then Q will be put
into (I'1,2,1,4,2)- and (', 2, 2,4, 2)-groups, where I'; €
{rTe’,’GG’","'CG’,'AG’,'TT',"TC’,"TA"}and 'y €
{rcar,'an’,"GA’,"TA’,'CC’,"CG’,’CT"}. Assume
that A is one of the (', y, i, [, d)-groups. A¢ represents the
set of Qs in A. Pairing this definition with the previous
observation, we find that the patterns that are (/, d)-similar
to the patterns in Ag must be present in Ag. Therefore,
for the patterns in Ag, when examining whether they are
unique, this principle can be applied to limit the discovery
to similar patterns to those patterns to decrease the num-
ber of patterns compared. Each time a processor in the
discovery node completes the task that it is given, the dis-
covery routine takes a (Y, v, i, [, d)-group for that proces-
sor to process, which allows for parallel processing. Sup-
pose the (Y, y, i, [, d)-group taken was A. For an [-pattern
P in Ag, when searching for ([, d)-similar patterns to P in
®, the discovery routine only compares P and the patterns

in Ag to find whether there are (I, d)-similar patterns to
P. If no (I, d)-similar pattern to P is found in Ag, then it
means that P is unique in ®. Conversely, it is not unique
and is deleted. The discovery routine repeats the above
process until all (Y, y, i, [, d)-groups are processed.

Results and discussion
Mathematical analysis
The time complexity of the discovery routine used in
the DDCSD algorithm is analyzed and the results are
integrated, yielding the time complexity of the DDCSD
algorithm. The memory consumption is also analyzed.
Suppose that / and d represent the length and the num-
ber of allowed mismatches of signatures, respectively. y
is a whole number between [//(d + 1)] and [//2]. E and
©® that are made up of /-patterns are the candidate and
source datasets received by the discovery routine. |E| and
|©®| denote the number of patterns in E and ©. According
to the y-segments included in the /-patterns in E and ©,
the [-patterns are assigned to (Y, y, i, 1, d)-groups, where
Y isa y-patternand 1 < i < [[/y]. Assume V is the set
of all possible (Y, y,i,[,d)-groups. A € V. Ag = ANE
and Ag = A N O. Since the patterns that are (/, d)-similar
to the patterns in Ag must be in Ag, each pattern in Ag
requires |Ag| string comparisons to check whether it is
unique, where |Ag| and |Ag| are the number of patterns

Lee and Sheu BMC Bioinformatics 2014, 15:339
http://www.biomedcentral.com/1471-2105/15/339

in Ag and Ag, respectively. Each of the string compar-
isons includes ¢ = [— y character comparisons. The
total number of character comparisons in the discovery
routine, denoted as Tpr(|E|, |®]), is:

Tor(1EL10) = Y alAz]lAe|
AeV

Suppose that E and © are in uniform distribution.
In this case, ¥ should contain 4¥8 (Y, y, i, [, d)-groups,
where g = [l/y]. |Ag| =~ BIEI/(4'B) = |E|/4
and |Ag| =~ «B|B|/(4YB) = «|O|/4Y, where k =
Z}(’;‘é/ 1 gk (%)- In the uniformly distributed case, the total
amount of character comparisons in the discovery rou-
tine, denoted as Tpr(|E|, |®)), is:

> alAzlAe]

AeV
a(4” B)(1E|/4Y)(k|®]/47)
aBk|E||0]/4”

Tpr(IE, 1O

Suppose that the input dataset A has a uniform dis-
tribution, and contains |[A| = 2"N patterns, where N
is the threshold value for direct discovery and # is a
whole number. In each recursion, the division can be done
by performing a sequential scan on A when dividing A
into two partitions. The computational cost of division is
n1|A|, where 1 is a constant. The amount of patterns sent
to and received from discovery nodes in data transmission
for processing each partition are all |A|/2. The total com-
putational cost for data division and transmission in each
recursion is n1|A|+2(n2|Al/2+ n3|Al/2) = nol| A, where
no, N2 and n3 are constants and ng = n1+n12+ns3. The com-
putational cost of using DDCSD to discover signatures
from A, denoted as Tppcsp(|Al), is:

Tppesp(AD = 2T ppesp(IA1/2) + nol Al

22T ppesp(|Al/4) + nol Al/2) + nol Al
22T ppesp(|1A1/8) + nol Al/4)
+n0lAl/2) + nol Al

2"Tppesp(IA1/2") + ol A
2"Tppesp(N) + 0l Al

2"Tpr(N,N) + n|A|

2"afiN? /4" + n|A|

27" aBk (2"N)% /47 + n|A|

= CIAP + Al

where ¢ = 272 g8k = 2= 2V (1 —) T1/y] Z,E);‘é/”
3k(}) and n = nno.

The computational cost for data division and trans-
mission, n|A|, is not too large in comparison with the

Page 7 of 10

computational cost for discovery, ¢|A|?. The time com-
plexity of using DDCSD to discover signatures from A is
O(IA%).

Suppose that the input dataset A has a uniform
distribution. According to the y-segments included in
the [-patterns in A, the [-patterns are assigned to
4Y B (Y, y,i,1,d)-groups. Each of the (Y, y, i, [, d)-groups
should contain approximately |A|/4Y + k|A|/4Y patterns.
In DDCSD, the memory is mainly used to store the
patterns in the (Y,y,i,/,d)-groups. The total memory
consumption in DDCSD, denoted as Mppcsp(|Al), is:

Mppcsp(IA]) = 47 B(AI/4Y + k|A]/47)
= B +K)|A]
= 7|A|

where T = B(1 +«) = [l/y] (1 + Z,L(J;%/” Bk(};))

The discovery node handles the discovery routine in
DDCSD. If there are too many patterns in the source
and candidate datasets, so that they cannot be loaded
into memory all at once, the discovery routine will split
them into multiple parts and load and process the parts
one at a time. In addition, the threshold value for direct
discovery, N, is decided based on the memory space of dis-
covery nodes so that the patterns in the datasets can be
loaded into the memory. Thus, the number of patterns in
each of the parts is on the order of N. According to the
y-segments included in the /-patterns in the parts, the /-
patterns are assigned to (Y, y, i,/, d)-groups. In discovery
nodes, the memory is mainly used to store the patterns
in the (Y, y,i,[,d)-groups. Based on the above discus-
sion about the total memory consumption in DDCSD, the
memory consumption of each discovery node is T|N]|.

The space complexity of using DDCSD to discover
signatures in A is O(]A]). The space complexity of a
discovery node is O(N).

Performance evaluation

The experimental platform that we used was a cluster of
eleven computers, including one main node and ten dis-
covery nodes. The main node was equipped with an Intel
Core i7 CPU 870 at 2.93 GHz, 16 GB of memory and
1.5 TB of disk space. Each of the discovery nodes was
equipped with an Intel Core i7 CPU 3770 K at 3.50 GHz,
32 GB of memory and 1 TB disk space. The operating sys-
tem was CentOS release 6.3, and the algorithm tested was
coded in JAVA and compiled in JDK 1.6. In this experi-
ment, we used the human whole-genome EST database
with 2.46G bases to test the performance of the DDCSD
algorithm. In order to avoid impacting the testing, we
deleted all remarks and sequences shorter than 36 bases
in the database and replaced all universal characters, for
example ‘don’t care’, in the sequences with an ‘A’.

Lee and Sheu BMC Bioinformatics 2014, 15:339
http://www.biomedcentral.com/1471-2105/15/339

Table 4 The discovery time for the DDCSD algorithm to
discover signatures from the human whole-genome EST
database under various discovery conditions

(d) =24 =26 I =28 =30
d=2 11758 8672 7284 6820
d=4 52366 40384 26100 20093

The experiment uses ten discovery nodes. The time unit is seconds.

When testing the DDCSD algorithm, each recursion
only loads the beginning and ending position of the data
partition and not the actual data. Only when the discov-
ery needs to happen does it load the data completely into
the memory in order to avoid taking up large amounts
of memory. In the tests, each [-pattern is divided into 2
segments, with the y value set to [/2.

In terms of testing the discovery performance of the
DDCSD algorithm, we used the human whole-genome
EST database as the experimental dataset, ten discov-
ery nodes, and a dataset threshold for direct discovery
at 125 MB. The results are shown in Table 4. Our data
shows that the DDCSD algorithm can discover all sig-
natures under the discovery condition (30,2) from the
human whole-genome EST database in 6820 seconds,
about 1.89 hours, and discover all signatures under the
discovery condition (24,4) from the database in 52366 sec-
onds, about 14.55 hours. When the length of patterns were
the same, if the mismatch tolerance d is larger, a larger
number of strings are compared. Thus, time required is
significantly greater than that of when the d value is lower.
Comparison is difficult when dealing with implementa-
tions that were optimized for different tasks. The require-
ments of discovery algorithms with regard to hardware
components, for example the demand on memory size,
are different. Although in cases where there is a sufficient
amount of memory many existing discovery algorithms,
such as Tallymer [32], are able to process the dataset in
the experiment. However, the memory requirement of
those algorithms is often too large so that they cannot
be executed on general-purpose computers with normal
memory size. DDCSD uses a divide-and-conquer strategy
to recursively divide large datasets into smaller datasets
until the split datasets can be processed using the current
memory size of discovery nodes. Then, the discovered sig-
nature sets from each of the split datasets are integrated

Table 5 The discovery time when various number of
discovery nodes were used

Nodes 2 4 6 8 10

Time 55185 28398 19275 14566 11758

The time unit is seconds.

Page 8 of 10

to obtain the signature set of the original dataset. There-
fore, when the memory size available for the discovery
nodes is limited, even to the 32 GB or 16 GB common on
regular personal computers or smaller, DDCSD can still
process large datasets. The processing ability of DDCSD
is not limited by memory size. In addition, by setting the
threshold value for direct discovery, DDCSD can limit the
memory requirement of discovery nodes during discov-
ery, which ensures that DDCSD can run on a cluster of
discovery nodes of different memory sizes.

In order to test the impact of the number of dis-
covery nodes on the discovery performance of DDCSD,
under the discovery condition (24,2), we utilized two
to ten discovery nodes to perform signature dis-
covery on the human whole-genome EST database.
The dataset threshold for direct discovery is set to
125 M bases. We define acceleration as the ratio
of the discovery time when two discovery nodes are
used to the discovery time when various number
of discovery nodes are used. The acceleration indicates the
improvement in discovery performance. The results are
shown in Table 5 and Figure 3. Table 5 presents the discov-
ery time for the DDCSD algorithm to discover signatures
when various number of discovery nodes were used, and
Figure 3 presents the acceleration due to the various num-
ber of discovery nodes. As we can see, when the number
of discovery nodes increases, the discovery time decreases
and acceleration increases. For example, when using four
discovery nodes, the discovery performance is 1.94 times
what it was with two discovery nodes. When using ten dis-
covery nodes, the discovery performance is 4.69 times that
of when there was two discovery nodes. The improved
discovery performance is linearly related to the number of
discovery nodes.

Finally, we tested the effect of thresholds for direct dis-
covery on the discovery performance of DDCSD. This
test was done on the human whole-genome EST database
using ten discovery nodes with the discovery condition set
as (24,2). The threshold value N was chosen between 35

1.00

| 1.94

2.86

[coll N N IN- I O]

|3.79
10 | 4.69

0 5
Acceleration
Figure 3 The acceleration when using various number of
discovery nodes. The values within the inside of the bars are the
number of discovery nodes.

Lee and Sheu BMC Bioinformatics 2014, 15:339
http://www.biomedcentral.com/1471-2105/15/339

125M 11758

82M 11735

62M | 12485

50M | 13086

41M | 13037

35M | 14660

10000 11(|)00 12600 13600 14600 15600
Seconds

Figure 4 The discovery time when using various thresholds for
direct discovery. The values within the inside of the bars are the
threshold values.

and 125 MB. The results are shown in Figure 4. From the
results, we can see that with the same amount of data, as N
decreases, discovery time increases, and, discovery time
decreases with the increase of N. For example, if N is set to
35 MB, then discovery time is approximately 24.68% more
than that of when N is set to 125 MB. The smaller the
N value, the more recursions are necessary in discovery,
and the need for additional computation and overheads
in data transmission also increases. However, the mem-
ory requirement for discovery processes decreases with
the decrease of N, as is intuitively obvious. The results also
indicate that the size of the database that the DDCSD algo-
rithm can process is not limited by the amount of memory
available. As long as a suitable N value is set based on
the size of the memory in discovery nodes, even when
facing large amounts of data, it can still be successfully
processed.

Conclusions

In this research, we proposed a distributed divide-
and-conquer-based signature discovery (DDCSD) algo-
rithm. The DDCSD algorithm uses a divide-and-conquer
strategy to overcome the problem of processing larger
databases, thus solving the disadvantage of previous algo-
rithms that could not process large databases. Also, a par-
allel computation mechanism on a computer cluster was
used to accelerate the signature discovery. Therefore, this
algorithm is not limited by the amount of memory avail-
able, and can rapidly find signatures in large databases,
making it applicable to analysis of NGS and other large
amounts of data.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

HPL carried out the unique signature studies, participated in the design of the
study, programmed the algorithms, evaluated the experimental results and
drafted the manuscript. TFS participated in its design and coordination,
performed the mathematical analysis, drafted the manuscript, convinced of
the study and helped to gather data. Both authors read and approved the final
manuscript.

Page 9 of 10

Acknowledgements

The authors would like to thank the Ministry of Science and Technology

of the Republic of China, Taiwan, for financially supporting this research
under Grants [NSC102-2218-E-040-001, NSC102-2221-E-040-004 and
MOST103-2218-E-040-001 to H.P. Lee] and [MOST103-2218-E-126-002 to T F.
Sheul; and the anonymous reviewers for their constructive suggestions.

Author details

WDepartment of Medical Informatics, Chung Shan Medical University, 110, Sec.
1, Jianguo N. Road, 40201 Taichung, Taiwan. 2Department of Medical
Research, Chung Shan Medical University Hospital, 110, Sec. 1, Jianguo N.
Road, 40201 Taichung, Taiwan. > Department of Computer Science and
Communication Engineering, Providence University, 200, Sec. 7, Taiwan
Boulevard, 43301 Shalu Dist,, Taichung, Taiwan.

Received: 22 April 2014 Accepted: 29 September 2014
Published: 5 October 2014

References

1. Kaderali L, Schliep A: Selecting signature oligonucleotides to
identify organisms using dna arrays. Bioinformatics 2002,
18(10):1340-1349.

2. Francois P, Charbonnier Y, Jacquet J, Utinger D, Bento M, Lew D, Kresbach
G. M, Ehrat M, Schlegel W, Schrenzel J: Rapid bacterial identification
using evanescent-waveguide oligonucleotide microarray
classification. J Microbiol Methods 2006, 65(3):390-403.

3. Kiryu BM, Kiryu CP: Rapid identification of candida albicans and other
human pathogenic yeasts by using oligonucleotides in a pcr. J Clin
Microbiol 1998, 73:1634-1641.

4. LiF, Stormo GD: Selection of optimal dna oligos for gene expression
arrays. Bioinformatics 2001, 17:1067-1076.

5. Roten CA, Gamba P, Barblan JL, Karamata D: Comparative genometrics
(cg): a database dedicated to biometric comparisons of whole
genomes. Nucleic Acids Res 2002, 30(1):142-144.

6. Hsiao W, Wan |, Jones SJ, Brinkman FS: Islandpath: aiding detection of
genomic islands in prokaryotes. Bioinformatics 2003, 19(3):418-420.

7. Amin HM, Hashem A-GM, Aziz RK: Bioinformatics determination of
etec sighature genes as potential targets for molecular diagnosis
and reverse vaccinology. BMC Bioinformatics 2009, 10:7.

8. Duitama J, Kumar DM, Hemphill E, Khan M, Mandoiu II, Nelson CE:
Primerhunter: a primer design tool for pcr-based virus subtype
identification. Nucleic Acids Res 2009, 37:2483-2492.

9. Vijaya SR, Zavaljevski N, Kumar K, Reifman J: A high-throughput pipeline
for designing microarray-based pathogen diagnostic assays. BVC
Bioinformatics 2008, 9:185.

10. Tembe W, Zavaljevski N, Bode E, Chase C, Geyer J, Wasieloski L, Benson G,
Reifman J: Oligonucleotide fingerprint identification for
microarray-based pathogen diagnostic assays. Bioinformatics 2007,
23(1):5-13.

11. Satya RV, Zavaljevski N, Kumar K, Bode E, Padilla S, Wasieloski L, Geyer J,
Reifman J: In silico microarray probe design for diagnosis of multiple
pathogens. BMC Genomics 2008, 9:496.

12. Phillippy AM, Mason JA, Ayanbule K, Sommer DD, Taviani E, Hug A,
Colwell RR, Knight IT, Salzberg SL: Comprehensive dna signature
discovery and validation. PLoS Comput Biol 2007, 3(5):e98.

13. Phillippy AM, Ayanbule K, Edwards NJ, Salzberg SL: Insignia: a dna
signature search web server for diagnostic assay development.
Nucleic Acids Res 2009, 37(2):229-234.

14. Rozen S, Skaletsky H: Primer3 on the www for general users and for
biologist programmers. Methods Mol Biol 2000, 132:365-386.

15. Satya RV, Kumar K, Zavaljevski N, Reifman J: A high-throughput pipeline
for the design of real-time pcr signatures. BVC Bioinformatics 2010,
11:340.

16. Bader KC, Grothoff C, Meier H: Comprehensive and relaxed search for
oligonucleotide signatures in hierarchically clustered sequence
datasets. Bioinformatics 2011, 27:1546-1554.

17. Zheng J, Close TJ, Jiang T, Lonardi S: Efficient selection of unique and
popular oligos for large est databases. Bioinformatics 2004,
20:2101-2112.

18. Lee HP, Sheu TF, Tsai YT, Shih CH, Tang. C Y: Efficient discovery of
unique signatures on whole-genome est databases. In Proceeding of

Lee and Sheu BMC Bioinformatics 2014, 15:339
http://www.biomedcentral.com/1471-2105/15/339

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

the 20th Annual ACM Symposium on Applied Computing (SAC2005). Santa
Fe: Association for Computing Machinery; 2005:100-104.

Lee HP, Sheu TF, Tang CY: A parallel and incremental algorithm for
efficient unique signature discovery on dna databases. BVC
Bioinformatics 2010, 11:132.

Eissler T, Hodges C P Meier, H: Ptpan-overcoming memory limitations
in oligonucleotide string matching for primer/probe design.
Bioinformatics 2011, 27:2797-2805.

Marcais G, Kingsford C: A fast, lock-free approach for efficient parallel
counting of occurrences of k-mers. Bioinformatics 2011, 27:764-770.
Rizk G, Lavenier D, Chikhi R: Dsk: k-mer counting with very low
memory usage. Bioinformatics 2013, 29(5):652-653.

Cormen TH, Leiserson CE, Rivest RL: Introduction to Algorithms.
Cambridge: MIT Press; 2009.

Grundy WN, Bailey TL, Elkan CP: Parameme: a parallel implementation
and a web interface for a dna and protein motif discovery tool.
Bioinformatics 1999, 12:303-310.

Ho ES, Jakubowski CD, Gunderson Sl: itriplet, a rule-based nucleic acid
sequence motif finder. Algorithm Mol Biol 2009, 29:14.

Green JR, Korenberg MJ, Aboul-Magd. M O: Pci-ss: Miso dynamic
nonlinear protein secondary structure prediction. BMC Bioinformatics
2009, 10:222.

Venkatesan A, Gopal J, Candavelou M, Gollapalli S, Karthikeyan K:
Computational approach for protein structure prediction. Healthcare
Inform Res 2013, 19:137-147.

Chen'Y, Wan A, Liu W: A fast parallel algorithm for finding the longest
common sequence of multiple biosequences. BMC Bioinformatics
2006, 7(4):4.

Rognes T: Paralign: a parallel sequence alignment algorithm for rapid
and sensitive database searches. Nucleic Acids Res 2001, 29:1647-1652.
Ebedes J, Datta. A: Multiple sequence alignment in parallel on a
workstation cluster. Bioinformatics 2004, 20(7):1193-1195.

Sun W, Al-Haj S, He J: Parallel computing in protein structure
topology determination. In Proceedings of 26th Army Science Conference.
Orlando: Assistant Secretary of Army; 2008:cp8.

Kurtz S, Narechania A, Stein JC, Ware D: A new method to compute
k-mer frequencies and its application to annotate large repetitive
plant genomes. BMC Genomics 2008, 9:517.

doi:10.1186/1471-2105-15-339

Cite this article as: Lee and Sheu: An algorithm of discovering signatures
from DNA databases on a computer cluster. BMC Bioinformatics

2014 15:339.

Page 10 of 10

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

® Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

() BiolVed Central

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Results and discussion
	Mathematical analysis
	Performance evaluation

	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.440 793.440]
>> setpagedevice

